Journal of Bone and Mineral Metabolism

, Volume 26, Issue 1, pp 1–8

Bone quality: the material and structural basis of bone strength



The material composition and structural design of bone determine its strength. Structure determines loads that can be tolerated but loads also determine structure. Bone modifies its material composition and structure to accommodate loads by adaptive modeling and remodeling. Adaptation is successful during growth but not aging because accumulating insults, including a reduction in the volume of bone formed in the basic multicellular unit (BMU), increased resorption in the BMU, increased remodeling rate in midlife in women and in some men because of sex hormone deficiency, and in both sexes in old age as a consequence of secondary hyperparathyroidism and reduced periosteal bone formation, all of which compromises the material composition of bone and its structure. An understanding of the mechanisms of adaptation and failed adaptation provides rational approaches to interventions that can prevent or restore bone fragility.

Key words

bone quality material and structural strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Currey, JD 2002Bones. Structure and mechanicsPrinceton University PressPrinceton, NJGoogle Scholar
  2. 2.
    Seeman, E, Delmas, PD 2006Bone quality: the material and structural basis of bone strength and fragilityN Engl J Med35422502261PubMedCrossRefGoogle Scholar
  3. 3.
    Zebaze, RMD, Jones, A, Welsh, F, Knackstedt, M, Seeman, E 2005Femoral neck shape and the spatial distribution of its mineral mass varies with its size: clinical and biomechanical implicationsBone (NY)37243252Google Scholar
  4. 4.
    Ruff, CB, Hayes, WC 1988Sex differences in age-related remodeling of the femur and tibiaJ Orthop Res6886896PubMedCrossRefGoogle Scholar
  5. 5.
    Duan, Y, Wang, XF, Evans, A, Seeman, E 2005Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and CaucasiansBone (NY)36987998Google Scholar
  6. 6.
    Wang, XF, Duan, Y, Beck, T, Seeman, ER 2005Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old ageBone (NY)36978986Google Scholar
  7. 7.
    Parfitt, AM, Travers, R, Rauch, F, Glorieux, FH 2000Structural and cellular changes during bone growth in healthy childrenBone (NY)27487494Google Scholar
  8. 8.
    Gilsanz, V, Roe, TF, Stefano, M, Costen, G, Goodman, WG 1991Changes in vertebral bone density in black girls and white girls during childhood and pubertyN Engl J Med32515971600PubMedCrossRefGoogle Scholar
  9. 9.
    Gilsanz, V, Gibbens, DT, Roe, TF, Carlson, M, Senac, MO 1988Vertebral bone density in children: effect of pubertyRadiology16684750PubMedGoogle Scholar
  10. 10.
    Murray, PDF, Huxley, JS 1925Self-differentiation in the grafted limb bud of the chickJ Anat59379384PubMedGoogle Scholar
  11. 11.
    Seeman, E 2002An exercise in geometryJ Bone Miner Res17373380PubMedCrossRefGoogle Scholar
  12. 12.
    Bonadio, J, Jepsen, KJ, Mansoura, MK, Jaenisch, R, Kuhn, JL, Goldstein, SA 1993A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragilityJ Clin Invest9216971705PubMedCrossRefGoogle Scholar
  13. 13.
    Kozloff, KM, Carden, A, Bergwitz, C, Forlino, A, Uveges, TE, Morris, MD, Marini, JC, Goldstein, SA 2004Brittle IV mouse model for osteogenesis imperfect IV demonstrates postpubertal adaptations to improve whole bone strengthJ Bone Miner Res19614622PubMedCrossRefGoogle Scholar
  14. 14.
    McBride, DJ,Jr, Shapiro, JR, Dunn, MG 1998Bone geometry and strength measurements in aging mice with the oim mutationCalcif Tissue Int62172176PubMedCrossRefGoogle Scholar
  15. 15.
    Szulc, P, Seeman, E, Delmas, PD 2000Biochemical measurements of bone turnover in children and adolescentsOsteoporosis Int11281294CrossRefGoogle Scholar
  16. 16.
    Nishida, S, Endo, N, Yamagiwa, H, Tanizawa, T, Takahashi, HE 1999Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturationJ Bone Miner Metab17171177PubMedCrossRefGoogle Scholar
  17. 17.
    Stenderup, K, Justesen, J, Eriksen, EF, Rattan, SI, Kassem, M 2001Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosisJ Bone Miner Res1611201129PubMedCrossRefGoogle Scholar
  18. 18.
    Oreffo, RO, Bord, S, Triffitt, JT 1998Skeletal progenitor cells and ageing human populationsClin Sci94549555PubMedGoogle Scholar
  19. 19.
    Lips, P, Courpron, P, Meunier, PJ 1978Mean wall thickness of trabecular bone packets in the human iliac crest: changes with ageCalcif Tissue Res101317CrossRefGoogle Scholar
  20. 20.
    Vedi, S, Compston, JE, Webb, A, Tighe, JR 1984Histomorphometric analysis of dynamic parameters of trabecular bone formation in the iliac crest of normal British subjectsMetab Bone Dis Relat Res56974CrossRefGoogle Scholar
  21. 21.
    Gilsanz, V, Gibbens, DT, Carlson, M, Boechat, I, Cann, CE, Schulz, ES 1987Peak trabecular bone density: a comparison of adolescent and adultCalcif Tissue Int43260262CrossRefGoogle Scholar
  22. 22.
    Balena, R, Shih, M-S, Parfitt, AM 1992Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy womenJ Bone Miner Res714751482PubMedCrossRefGoogle Scholar
  23. 23.
    Seeman, E 2003Periosteal bone formation: a neglected determinant of bone strengthN Engl J Med349320323PubMedCrossRefGoogle Scholar
  24. 24.
    Ahlborg, HG, Johnell, O, Turner, CH, Rannevik, G, Karlsson, MK 2003Bone loss and bone size after the menopauseN Engl J Med349327334PubMedCrossRefGoogle Scholar
  25. 25.
    Brown, JP, Delmas, PD, Arlot, M, Meunier, PJ 1987Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosisJ Clin Endocrinol Metab64954959PubMedCrossRefGoogle Scholar
  26. 26.
    Foldes, J, Parfitt, AM, Shih, M-S, Rao, DS, Kleerekoper, M 1991Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosisJ Bone Miner Res6759766PubMedGoogle Scholar
  27. 27.
    Aaron, JE, Makins, NB, Sagreiy, K 1987The microanatomy of trabecular bone loss in normal aging men and womenClin Orthop Relat Res215260271PubMedGoogle Scholar
  28. 28.
    Van der Linden, JC, Homminga, J, Verhaar, JAN, Weinans, H 2001Mechanical consequences of bone loss in cancellous boneJ Bone Miner Res16457465PubMedCrossRefGoogle Scholar
  29. 29.
    Manolagas, SC 2000Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosisEndocr Rev21115137PubMedCrossRefGoogle Scholar
  30. 30.
    Duan, Y, Turner, CH, Kim, BT, Seeman, E 2001Sexual dimorphism in vertebral fragility is more the results of gender differences in bone gain than bone lossJ Bone Miner Res1622672275PubMedCrossRefGoogle Scholar
  31. 31.
    Duan, Y, Beck, TJ, Wang, X-F, Seeman, E 2003Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and agingJ Bone Miner Res1817661774PubMedCrossRefGoogle Scholar
  32. 32.
    Brockstedt, H, Kassem, M, Eriksen, EF, Mosekilde, L, Melsen, F 1993Age- and sex-related changes in iliac cortical bone mass and remodelingBone14681691PubMedCrossRefGoogle Scholar
  33. 33.
    Martin, RB, Ishida, J 1989The relative effects of collagen fiber orientation, porosity, density and mineralization on bone strengthJ Biomech22419426PubMedCrossRefGoogle Scholar
  34. 34.
    Yeni, YN, Brown, CU, Wang, Z, Norman, TL 1997The influence of bone morphology on fracture toughness of the human femur and tibiaBone (NY)21453459Google Scholar
  35. 35.
    Szulc, P, Seeman, E, Duboeuf, F, Sornay-Rendu, E, Delmas, PD 2006Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal womenJ Bone Miner Res2118561863PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2008

Authors and Affiliations

  1. 1.Department of Endocrinology and MedicineAustin HospitalMelbourneAustralia

Personalised recommendations