Journal of Bone and Mineral Metabolism

, Volume 26, Issue 1, pp 73–78 | Cite as

Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass

  • Emilie RocherEmail author
  • Christine Chappard
  • Christelle Jaffre
  • Claude-Laurent Benhamou
  • Daniel Courteix


The aim of the study was to determine the influence of obesity on bone status in prepubertal children. This study included 20 obese prepubertal children (10.7 ± 1.2 years old) and 23 maturation-matched controls (10.9 ± 1.1 years old). Bone mineral area, bone mineral content (BMC), bone mineral density (BMD), and calculation of bone mineral apparent density (BMAD) at the whole body and lumbar spine (L1–L4) and body composition (lean mass and fat mass) were assessed by DXA. Broadband ultrasound attenuation (BUA) and speed of sound (SOS) at the calcaneus were measured with a BUA imaging device. Expressed as crude values, DXA measurements of BMD at all bone sites and BUA (69.30 versus 59.63 dB/MHz, P < 0.01) were higher in obese children. After adjustment for body weight and lean mass, obese children displayed lower values of whole-body BMD (0.88 versus 0.96 g/cm2, P < 0.05) and BMC (1190.98 versus 1510.24 g, P < 0.01) in comparison to controls. When results were adjusted for fat mass, there was no statistical difference between obese and control children for DXA and ultrasound results. Moreover, whole-body BMAD was lower (0.086 versus 0.099 g/cm3, P < 0.0001), whereas lumbar spine BMAD was greater (0.117 versus 0.100 g/cm3, P < 0.001) in obese children. Thus, it was observed that, in obese children, cortical and trabecular bone displayed different adaptation patterns to their higher body weight. Cortical bone seems to enhance both size and BMC and trabecular bone to enhance BMC. Finally, considering total body weight and lean mass of obese children, these skeletal responses were not sufficient to compensate for the excess load on the whole body.

Key words

children obesity body composition DXA QUS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wabitsch, M 2000Overweight and obesity in European children: definition and diagnostic procedures, risk factors and consequences for later health outcomeEur J Pediatr159S8S13PubMedCrossRefGoogle Scholar
  2. 2.
    Goulding, A, Cannan, R, Williams, SM, Gold, EJ, Taylor, RW, Lewis-Barned, NJ 1998Bone mineral density in girls with forearm fracturesJ Bone Miner Res13143148PubMedCrossRefGoogle Scholar
  3. 3.
    Goulding, A, Jones, IE, Taylor, RW, Manning, PJ, Williams, SM, Manning, PJ 2001Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry studyPediatrics139509515CrossRefGoogle Scholar
  4. 4.
    Bakker, I, Twisk, JWR, Van Mechelen, W, Kemper, HCG 2003Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and womenJ Clin Endocrinol Metab8826072613PubMedCrossRefGoogle Scholar
  5. 5.
    McCormick, DP, Ponder, SW, Fawcett, D, Palmer, JL 1991Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differencesJ Bone Miner Res6507513PubMedGoogle Scholar
  6. 6.
    De Schepper, J, Van den Broeck, M, Jonckheer, MH 1995Study of lumbar spine bone mineral density in obese childrenActa Paediatr84313315PubMedGoogle Scholar
  7. 7.
    Goulding, A, Taylor, RW, Jones, IE, McAuley, KA, Manning, PJ, Williams, SM 2000Overweight and obese children have low bone mass and area for their weightInt J Obes Relat Metab Disord24627632PubMedCrossRefGoogle Scholar
  8. 8.
    Goulding, A, Taylor, RW, Jones, IE, Manning, PJ, Williams, SM 2002Spinal overload: a concern for obese children and adolescents?Osteoporos Int13835840PubMedCrossRefGoogle Scholar
  9. 9.
    Ellis, KJ, Shypailo, RJ, Wong, WW, Abrams, SA 2003Bone mineral mass in overweight and obese children: diminished or enhanced?Acta Diabetol40274277CrossRefGoogle Scholar
  10. 10.
    Leonard, MB, Shults, J, Wilson, BA, Tershakovec, AM, Zemel, BS 2004Obesity during childhood and adolescence augments bone mass and bone dimensionsAm J Clin Nutr80514523PubMedGoogle Scholar
  11. 11.
    Manzoni, P, Brambilla, P, Pietrobelli, A, Beccaria, L, Bianchessi, A, Mora, S, Chiumello, G 1996Influence of body composition on bone mineral content in children and adolescentsAm J Clin Nutr64603607PubMedGoogle Scholar
  12. 12.
    Hasanoglu, A, Bideci, A, Cinaz, P, Tumer, L, Unal, S 2000Bone mineral density in childhood obesityJ Pediatr Endocrinol Metab13307311PubMedGoogle Scholar
  13. 13.
    Bonjour, JP, Theintz, G, Buchs, B, Slosman, D, Rizzoli, R 1991Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescenceJ Clin Endocrinol Metab73555563PubMedGoogle Scholar
  14. 14.
    Heaney, RP, Abrams, S, Dawson-Hughes, B, Looker, A, Mercus, R, Matkovic, V, Weaver, C 2000Peak bone massOsteoporos Int119851009PubMedCrossRefGoogle Scholar
  15. 15.
    Pietrobelli, A, Peroni, DG, Faith, MS 2003Pediatric body composition in clinical studies: which methods in which situations?Acta Diabetol40270273CrossRefGoogle Scholar
  16. 16.
    Gutin, B, Litaker, M, Islam, S, Manos, T, Smith, C, Treiber, F 1996Body-composition measurement in 9–11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysisAm J Clin Nutr63287292PubMedGoogle Scholar
  17. 17.
    Thomas, SR, Kalkwarf, HJ, Buckley, DD, Heubi, JE 2005Effective dose of dual-energy X-ray absorptiometry scans in children as a function of ageJ Clin Densitom8415422PubMedCrossRefGoogle Scholar
  18. 18.
    Goran, MI 1998Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intakePediatrics101505518PubMedCrossRefGoogle Scholar
  19. 19.
    Dip, L, Arabi, A, Maalouf, J, Nabulsi, M, Fuleihan, GEH 2005Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school childrenBone (NY)36736742Google Scholar
  20. 20.
    Duquette, J, Lin, J, Hoffman, A, Houde, J, Ahmadi, S, Baran, D 1997Correlations among bone mineral density, broadband ultrasound attenuation, mechanical indentation testing, and bone orientation in bovine femoral neck samplesCalcif Tissue Int60181186PubMedCrossRefGoogle Scholar
  21. 21.
    Cole, TJ, Bellizzi, MC, Flegal, KM, Dietz, WH 2000Establishing a standard definition for child overweight and obesity worldwide: international surveyBMJ32016CrossRefGoogle Scholar
  22. 22.
    Tanner, JM, Whitehouse, RH 1976Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of pubertyArch Dis Child51170179PubMedCrossRefGoogle Scholar
  23. 23.
    Courteix, D, Jaffre, C, Lespessailles, E, Benhamou, L 2005Cumulative effect of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trialInt J Sports Med26332338PubMedCrossRefGoogle Scholar
  24. 24.
    Katzman, DK, Bacrach, LK, Carter, DR, Marcus, R 1991Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girlsJ Clin Endocrinol Metab7313321339PubMedCrossRefGoogle Scholar
  25. 25.
    Nagasaki, K, Kikuchi, T, Hiura, M, Uchiyama, M 2004Obese Japanese children have low bone mineral density after pubertyJ Bone Miner Metab22376381PubMedCrossRefGoogle Scholar
  26. 26.
    Boot, AM, De Ridder, MA, Pols, HA, Krenning, EP, De Muinck Keizer-Schrama, SM 1997Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activityJ Clin Endocrinol Metab825762PubMedCrossRefGoogle Scholar
  27. 27.
    Weiler, HA, Janzen, L, Green, K, Grabowski, J, Seshi, MM, Yuen, KC 2000Percent body fat and bone mass in healthy Canadian females 10 to 19 years of ageBone (NY)27203207Google Scholar
  28. 28.
    Fischer, S, Milinarsky, A, Giadrosich, V, Dib, G, Arriagada, M, Arinoviche, R 2000X-ray absorptiometry of bone in obese and eutrophic children from Valparaiso, ChileJ Rheumatol2712941296PubMedGoogle Scholar
  29. 29.
    Martin, TJ, Ng, KW, Nicholson, GC 1988Cell biology of boneBaillieres Clin Endocrinol Metab2129PubMedCrossRefGoogle Scholar
  30. 30.
    Rico, H, Gonzales-Riola, J, Revilla, M, Villa, LF, Gomes-Castresana, F, Escribano, J 1994Cortical versus trabecular bone mass: influence of activity on both componentsCalcif Tissue Int54470472PubMedCrossRefGoogle Scholar
  31. 31.
    Ducher, G, Prouteau, S, Courteix, D, Benhamou, CL 2004Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playingJ Clin Densitom7399405PubMedCrossRefGoogle Scholar
  32. 32.
    Courteix, D, Lespessailles, E, Obert, P, Benhamou, CL 1999Skull bone mass deficit in prepubertal highly trained gymnast girlsInt J Sports Med20328333PubMedCrossRefGoogle Scholar
  33. 33.
    Magnusson, H, Linden, C, Karlsson, C, Obrant, KJ, Karlsson, MK 2001Exercise may induce reversible low bone mass in unloaded and high bone mass in weight-loaded skeletal regionsOsteoporos Int12950955PubMedCrossRefGoogle Scholar
  34. 34.
    Seeman, E 1998Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective studyJ Bone Miner Res1318141821PubMedCrossRefGoogle Scholar
  35. 35.
    Babaroutsi, E, Magkos, F, Manios, Y, Sidossis, LS 2005Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific mannerJ Bone Miner Metab23157166PubMedCrossRefGoogle Scholar
  36. 36.
    Babaroutsi, E, Magkos, F, Manios, Y, Sidossis, LS 2005Lifestyle factors affecting heel ultrasound in Greek females across different life stagesOsteoporos Int16552561PubMedCrossRefGoogle Scholar
  37. 37.
    Janz, KF, Burns, TL, Levy, SM, Torner, JC, Willing, MC, Beck, TJ, Gilmore, JM, Marshall, TA 2004Everyday activity predicts bone geometry in children: the Iowa bone development studyMed Sci Sports Exerc3611241131PubMedCrossRefGoogle Scholar
  38. 38.
    Slemenda, CW, Miller, JZ, Hui, SL, Reister, TK, Johnston, CC 1991Role of physical activity in the development skeletal mass in childrenJ Bone Miner Res612271231PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenbaum, M, Leibel, RL 1998The physiology of body weight regulation: relevance to the etiology of obesity in childrenPediatrics101525539PubMedGoogle Scholar
  40. 40.
    Salbe, AD, Weyer, C, Lindsay, RS, Ravussin, E, Tataranni, PA 2002Assessing risk factors for obesity between childhood and adolescence; birth weight, childhood adiposity, parental adiposity, parental obesity, insulin and leptinPediatrics110299306PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas, T 2004The complex effects of leptin on bone metabolism through multiple pathwaysCurr Opin Pharmacol4295300PubMedCrossRefGoogle Scholar
  42. 42.
    Cortet, B, Marchandise, X 2001Bone microarchitecture and mechanical resistanceJoint Bone Spine68297305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2008

Authors and Affiliations

  • Emilie Rocher
    • 1
    • 2
    Email author
  • Christine Chappard
    • 2
  • Christelle Jaffre
    • 1
  • Claude-Laurent Benhamou
    • 1
    • 2
  • Daniel Courteix
    • 1
  1. 1.Bone Tissue Architecture and Physical Exercise (ATOSEP Laboratory)University of OrleansFrance
  2. 2.Inserm U658Centre Hospitalier RégionalOrléansFrance

Personalised recommendations