Journal of Bone and Mineral Metabolism

, Volume 25, Issue 5, pp 266–276 | Cite as

Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes

  • Makoto Hirao
  • Jun Hashimoto
  • Naomi Yamasaki
  • Wataru Ando
  • Hideki Tsuboi
  • Akira Myoui
  • Hideki Yoshikawa


Osteocytes are derived from osteoblasts, but reside in the mineralized bone matrix under hypoxic conditions. Osteocyte-like cells show higher expression of ORP150, which is induced by hypoxia, than osteoblast-like cells. Accordingly, we hypothesized that the oxygen tension may regulate the transformation of osteoblasts to osteocytes. MC3T3-E1 cells and calvariae from 4-day-old mice were cultured under normoxic (20% O2) or hypoxic (5% O2) conditions. To investigate osteoblastic differentiation and tranformation to osteocytes, alizarin red staining was done and the expression of various factors was assessed. Hypoxic culture promoted the increased synthesis of mineralized matrix by MC3T3-E1 cells. Alkaline phosphatase activity was initially increased during hypoxic culture, but decreased during osteogenesis. Osteocalcin production was also increased by hypoxic culture, but decreased after mineralization. Furthermore, expression of Dmp1, Mepe, Fgf23, and Cx43, which are osteocyte-specific or osteocyte-predominant proteins, by MC3T3-E1 cells was greater under hypoxic than under normoxic conditions. In mouse calvarial cultures, the number of cells in the bone matrix and cells expressing Dmp1 and Mepe were increased by hypoxia. In MC3T3-E1 cell cultures, ORP150 expression was only detected in the mineralized nodules under normoxic conditions, while its expression was diffuse under hypoxic conditions, suggesting that the nodules were hypoxic zones even in normoxic cultures. These findings suggest that a low oxygen tension promotes osteoblastic differentiation and subsequent transformation to osteocytes.

Key words

hypoxia osteoblast osteocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gegenbauer, C 1864Untersuchungen zur vergleichenden Anatomie der Wirbeltiere. Heft1. Carpus und Tarsus (in German)SchultergtelLeipzigGoogle Scholar
  2. 2.
    Frost, HM 1960In vivo osteocyte deathJ Bone Joint Surg42A138143Google Scholar
  3. 3.
    Marotti, G 1996The structure of bone tissues and the cellular control of their depositionItal J Anat Embryol1012579PubMedGoogle Scholar
  4. 4.
    Kiaer, T, Gronlund, J, Sorensen, KH 1988Subchondral pO2, pCO2, pressure, pH, and lactate in human osteoarthritis of the hipClin Orthop229149155PubMedGoogle Scholar
  5. 5.
    Smith, J, Grant, B 1963Bone marrow gas tensions, bone marrow blood flow, and erythropoiesis in manAnn Int Med58801809PubMedGoogle Scholar
  6. 6.
    Kofoed, H, Sjontoft, E, Siemssen, SO, Olesen, HP 1985Bone marrow circulation after osteotomy. Blood flow, pO2, pCO2, and pressure studied in dogsActa Orthop Scand56400403PubMedCrossRefGoogle Scholar
  7. 7.
    Richter, A, Sanford, KK, Evans, VJ 1972Influence of oxygen and culture media on plating efficiency of some mammalian tissue cellsJ Natl Cancer Inst4917051712PubMedGoogle Scholar
  8. 8.
    Cipolleschi, MG, Dello Sbarba, P, Olivotto, M 1993The role of hypoxia in the maintenance of hematopoietic stem cellsBlood8220312037PubMedGoogle Scholar
  9. 9.
    Martin, L 1987Pulmonary Physiology in Clinical Practice: The Essentials for Patient Care and EvaluationMosbySt. Louis1416Google Scholar
  10. 10.
    Chow, DC, Wenning, LA, Miller, WM, Papoutsakis, ET 2001Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's modelBiophys J81675684PubMedCrossRefGoogle Scholar
  11. 11.
    Guo, D, Guthrie, J, Zhao, J, Barragan, L, Harris, S, Bonewald, L 2005Proteomic comparison of osteoblasts and osteocytes reveals unique protein expression patternsJ Bone Miner Res20S150Google Scholar
  12. 12.
    Kuwabara, K, Matsumoto, M, Ikeda, J, Hori, O, Ogawa, S, Maeda, Y, Kitagawa, K, Imuta, N, Kinoshita, T, Stern, DM, Yanagi, H, Kamada, T 1996Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brainJ Biol Chem27150255032PubMedCrossRefGoogle Scholar
  13. 13.
    Ozawa, K, Kuwabara, K, Tamatani, M, Takatsuji, K, Tsukamoto, Y, Kaneda, S, Yanagi, H, Stern, DM, Eguchi, Y, Tsujimoto, Y, Ogawa, S, Tohyama, M 1999150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell deathJ Biol Chem27463976404PubMedCrossRefGoogle Scholar
  14. 14.
    Kato, Y, Boskey, A, Spevak, L, Dallas, M, Hori, M, Bonewald, L 2001Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in cultureJ Bone Miner Res1616221633PubMedCrossRefGoogle Scholar
  15. 15.
    Lecanda, F, Warlow, PM, Sheikh, S, Furlan, F, Steinberg, TH, Civitelli, R 2000Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunctionJ Cell Biol151931943PubMedCrossRefGoogle Scholar
  16. 16.
    Gramsch, B, Gabriel, HD, Wiemann, M, Grümmer, R, Winterhager, E, Bingmann, D, Schirrmacher, K 2001Enhancement of connexin 43 expression increases proliferation and differentiation of an osteoblast-like cell lineExp Cell Res264397407PubMedCrossRefGoogle Scholar
  17. 17.
    Kato, Y, Windle, JJ, Koop, BA, Mundy, GR, Bonewald, LF 1997Establishment of an osteocyte-like cell line, MLO-Y4J Bone Miner Res1220142023PubMedCrossRefGoogle Scholar
  18. 18.
    Toyosawa, S, Shintani, S, Fujiwara, T, Ooshima, T, Sato, A, Ijuhin, N, Komori, T 2001Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblastsJ Bone Miner Res1620172026PubMedCrossRefGoogle Scholar
  19. 19.
    Nampei, A, Hashimoto, J, Hayashida, K, Tsuboi, H, Shi, K, Tsuji, I, Miyashita, H, Yamada, T, Matsukawa, N, Matsumoto, M, Morimoto, S, Ogihara, T, Ochi, T, Yoshikawa, H 2004Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human boneJ Bone Miner Metab22176184PubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, Goto H, Ohashi H, Koyano HM, Mochizuki R, Miki T, Inaba M, Nishizawa Y (2005) Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci (Epub ahead of print)Google Scholar
  21. 21.
    Riminucci, M, Collins, MT, Fedarko, NS, Cherman, N, Corsi, A, White, KE, Waguespack, S, Gupta, A, Hannon, T, Econs, MJ, Bianco, P 2003FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wastingJ Clin Invest112683692PubMedCrossRefGoogle Scholar
  22. 22.
    Traianedes, K, Dallas, MR, Garrett, IR, Mundy, GR, Bonewald, LF 19985-Lipoxygenase metabolites inhibit bone formation in vitroEndocrinology13931783184PubMedCrossRefGoogle Scholar
  23. 23.
    Mundy, G, Garrett, R, Harris, S, Chan, J, Chen, D, Rossini, G, Boyce, B, Zhao, M, Gutierrez, G 1999Stimulation of bone formation in vitro and in rodents by statinsScience28619461949PubMedCrossRefGoogle Scholar
  24. 24.
    Garrett, IR, Chen, D, Gutierrez, G, Zhao, M, Escobedo, A, Rossini, G, Harris, SE, Gallwitz, W, Kim, KB, Hu, S, Crews, CM, Mundy, GR 2003Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitroJ Clin Invest11117711782PubMedCrossRefGoogle Scholar
  25. 25.
    Ratisoontorn, C, Seto, ML, Broughton, KM, Cunningham, ML 2005In vitro differentiation profile of osteoblasts derived from patients with Saethre–Chotzen syndromeBone36627634PubMedCrossRefGoogle Scholar
  26. 26.
    Schipani, E 2005Hypoxia and HIF-1α in chondrogenesisSemin Cell Dev Biol16539546PubMedCrossRefGoogle Scholar
  27. 27.
    Douglas, BC, Mara, J, Lina, MG, Sabrena, N, Pedro, JN, Francis, XM,Jr 2003Hypoxia and stretch regulate intercellular communication in vascular smooth muscle cells through reactive oxygen species formationArterioscler Thromb Vasc Biol2317541760CrossRefGoogle Scholar
  28. 28.
    Bjornheden, T, Levin, M, Evaldsson, M, Wiklund, O 1999Evidence of hypoxic areas within the arterial wall in vivoArterioscler Thromb Vasc Biol19870876PubMedGoogle Scholar
  29. 29.
    Tsukamoto, Y, Kuwabara, K, Hirota, S, Ikeda, J, Stern, D, Yanagi, H, Matsumoto, M, Ogawa, S, Kitamura, Y 1996150-kD oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoproteinJ Clin Invest9819301941PubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi, T, Yura, T, Yanagi, H 2002The increment of anti-ORP150 autoantibody in initial stages of atheroma in high-fat diet fed miceJ Vet Med Sci64177180PubMedCrossRefGoogle Scholar
  31. 31.
    Bostrom, K 2001Insights into the mechanism of vascular calcificationAm J Cardiol8820E22EPubMedCrossRefGoogle Scholar
  32. 32.
    Dhore, CR, Cleutjens, JP, Lutgens, E, Cleutjens, KB, Geusens, PP, Kitslaar, PJ, Tordoir, JH, Spronk, HM, Vermeer, C, Daemen, MJ 2001Differential expression of bone matrix regulatory proteins in human atherosclerotic plaquesArterioscler Thromb Vasc Biol2119982003PubMedGoogle Scholar
  33. 33.
    Engelse, MA, Neele, JM, Bronckers, AL, Pannekoek, H, de Vries, CJ 2001Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesisCardiovasc Res52281289PubMedCrossRefGoogle Scholar
  34. 34.
    Demar, LL, Tintut, Y 2003Mineral exploration: search for the mechanism of vascular calcification and beyond. The 2003 Jeffrey M. Hoeg Award LectureArterioscler Thromb Vasc Biol2317391743CrossRefGoogle Scholar
  35. 35.
    Mody, N, Tintut, Y, Radcliff, K, Demer, LL 2003Vascular calcification and its relation to bone calcification: possible underlying mechanismsJ Nucl Cardiol10177183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • Makoto Hirao
    • 1
  • Jun Hashimoto
    • 1
  • Naomi Yamasaki
    • 1
  • Wataru Ando
    • 1
  • Hideki Tsuboi
    • 1
  • Akira Myoui
    • 1
    • 2
  • Hideki Yoshikawa
    • 1
  1. 1.Department of OrthopaedicsOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Medical Center for Translational ResearchOsaka University HospitalOsakaJapan

Personalised recommendations