Journal of Bone and Mineral Metabolism

, Volume 25, Issue 5, pp 293–301 | Cite as

Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats

  • Shuang-Qing Zhang
  • Guo-Hua Chen
  • Wan-Liang Lu
  • Qiang Zhang


Oral delivery, rather than parenteral administration, would be beneficial for treating diabetic mellitus owing to the need for a long-term regimen. The objectives of this study were to evaluate oral delivery tolerance and the effects on the bone of accumulated vanadium following the long-term administration of vanadyl acetylacetonate (VAC). Normal and diabetic rats were intragastrically administered VAC at a dose of 3 mg vanadium/kg body weight once daily for 35 consecutive days. VAC did not cause any obvious signs of diarrhea, any changes in kidney or liver, or deaths in any group. The phosphate levels in the bone were slightly increased, and the calcium levels in the bone were not obviously changed as compared with those of the rat group not receiving VAC. After administration of VAC, the decreased ultimate strength, trabecular thickness, mineral apposition rate, and plasma osteocalcin in diabetic rats were either improved or normalized, but reduced bone mineral density (BMD) in diabetic rats was not improved. None of the parameters evaluated in normal rats were altered. The results indicate that the oral VAC is tolerated and benefits the diabetic osteopathy of rats, but seems not to influence the bone of normal rats. They also suggest that VAC improves diabetes-related bone disorders, primarily by improving the diabetic state.

Key words

vanadyl acetylacetonate diabetes bone markers bone biomechanics bone histomorphometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyliger, CE, Tahiliani, AG, McNeill, JH 1985Effect of vanadate on elevated glucose and depressed cardiac performance of diabetic ratsScience22714741477PubMedCrossRefGoogle Scholar
  2. 2.
    Pederson, RA, Ramanadham, S, Buchan, AMJ, McNeill, JH 1989Long-term effects of vanadyl treatment on streptozocin-induced diabetes in ratsDiabetes3813901395PubMedCrossRefGoogle Scholar
  3. 3.
    Crans, DC 2000Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compoundsJ Inorg Biochem80123131PubMedCrossRefGoogle Scholar
  4. 4.
    Shechter, Y 1990Insulin-mimetic effect of vanadate. Possible implications for future treatment of diabetesDiabetes3915PubMedCrossRefGoogle Scholar
  5. 5.
    Goldfine, AB, Simonson, DC, Folli, F, Patti, ME, Kahn, CR 1995In vivo and in vitro studies of vanadate in human and rodent diabetes mellitusMol Cell Biochem153217231PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen, N, Halberstam, M, Shlimovich, P, Chang, CJ, Shamoon, H, Rossetti, L 1995Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitusJ Clin Invest9525012509PubMedGoogle Scholar
  7. 7.
    Bhanot, S, Bryer-Ash, M, Cheung, A, McNeill, JH 1994Bis(maltolato)oxovanadium (IV) attenuates hyperinsulinemia and hypertension in spontaneously hypertensive ratsDiabetes43857861PubMedCrossRefGoogle Scholar
  8. 8.
    Bhnot, S, Michoulas, A, McNeill, JH 1995Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive ratsMol Cell Biochem153205209CrossRefGoogle Scholar
  9. 9.
    Kiersztan, A, Modzelewska, A, Jarzyna, R, Jagielska, E, Bryla, J 2002Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbitsBiochem Pharmacol6313711382PubMedCrossRefGoogle Scholar
  10. 10.
    Kiersztan, A, Jarzyna, R, Bryla, J 1998Inhibitory effect of vanadium compounds on glutamate dehydrogenase activity in mitochondria and hepatocytes isolated from rabbit liverPharmacol Toxicol82167172PubMedGoogle Scholar
  11. 11.
    Li, J, Elberg, G, Sekar, N, He, ZB, Shechter, Y 1997Antilipolytic actions of vanadate and insulin in rat adipocytes mediated by distinctly different mechanismsEndocrinology13822742279PubMedCrossRefGoogle Scholar
  12. 12.
    Poucheret, P, Verma, S, Grynpas, MD, McNeill, JH 1998Vanadium and diabetesMol Cell Biochem1887380PubMedCrossRefGoogle Scholar
  13. 13.
    Reul, BA, Amin, SS, Buchet, J-P, Ongemba, LN, Crans, DC, Brichard, SM 1999Effect of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic ratsBr J Pharmacol126467477PubMedCrossRefGoogle Scholar
  14. 14.
    Yuen, VG, Orvig, C, Thompson, KH, McNeill, JH 1993Improvement in cardiac dysfunction in streptozotocin-induced diabetic rats following chronic oral administration of bis(maltolato)oxovanadium(IV)Can J Physiol Pharmacol71270276PubMedGoogle Scholar
  15. 15.
    Dai, S, Thompson, KH, Vera, E, McNeill, JH 1994Toxicity studies on one-year treatment of non-diabetic and streptozotocin-diabetic rats with vanadyl sulphatePharmacol Toxicol75265273PubMedGoogle Scholar
  16. 16.
    Hamel, FG, Duckworth, WC 1995The relationship between insulin and vanadium metabolism in insulin target tissuesMol Cell Biochem15395102PubMedCrossRefGoogle Scholar
  17. 17.
    Setyawati, IA, Thompson, KH, Yuen, VG, Sun, Y, Battell, M, Lyster, DM, Vo, C, Ruth, TJ, Zeisler, S, McNeill, JH, Orvig, C 1998Kinetic analysis and comparison of uptake, distribution, and execretion of 48V-labeled compounds in ratsJ Appl Physiol84569575PubMedGoogle Scholar
  18. 18.
    Thompson, KH, Liboiron, BD, Sun, Y, Bellman, KD, Setyawati, IA, Patrick, BO, Karunaratne, V, Rawji, G, Wheeler, J, Sutton, K, Bhanot, S, Cassidy, C, McNeill, JH, Yuen, VG, Orvig, C 2003Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands: in vivo comparisons of anti-diabetic therapeutic potentialJ Biol Inorg Chem86674PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, SQ, Zhong, XY, Lu, WL, Zheng, L, Zhang, X, Sun, F, Fu, GY, Zhang, Q 2005Pharmacodynamics and pharmacokinetics of the insulin-mimetic agent vanadyl acetylacetonate in non-diabetic and diabetic ratsJ Inorg Biochem9910641075PubMedCrossRefGoogle Scholar
  20. 20.
    Goodman, WG, Hori, MT 1984Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralizationDiabetes33825831PubMedCrossRefGoogle Scholar
  21. 21.
    Macey, LR, Kana, SM, Jingushi, S, Terek, RM, Borretos, J, Bolander, ME 1989Defects of early fracture-healing in experimental diabetesJ Bone Joint Surg Am71722733PubMedGoogle Scholar
  22. 22.
    Katayama, Y, Akatsu, T, Yamamoto, M, Kugai, N, Nagata, N 1996Role of nonenzymatic glycosylation of type I collagen in diabetic osteopeniaJ Bone Miner Res11931937PubMedGoogle Scholar
  23. 23.
    Schwartz, AV 2003Diabetes mellitus: does it affect bone?Calcif Tissue Int73515519PubMedCrossRefGoogle Scholar
  24. 24.
    Reddy, GK, Stehno-Bittel, L, Hamade, S, Enwemeka, CS 2001The biomechanical integrity of bone in experimental diabetesDiabetes Res Clin Pract5418PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki, K, Miyakoshi, N, Tsuchida, T, Kasukawa, Y, Sato, K, Itoi, E 2003Effects of combined treatment of insulin and human parathyroid hormone(1-34) on cancellous bone mass and structure in streptozotocin-induced diabetic ratsBone33108114PubMedCrossRefGoogle Scholar
  26. 26.
    Bain, S, Ramamurthy, NS, Impeduglia, T, Scolman, S, Golub, LM, Rubin, C 1997Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic ratsBone21147153PubMedCrossRefGoogle Scholar
  27. 27.
    Cortizo, AM, Etcheverry, SB 1995Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cellsMol Cell Biochem14597102PubMedCrossRefGoogle Scholar
  28. 28.
    Cortizo, AM, Bruzzone, L, Molinuevo, S, Etcheverry, SB 2000A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell linesToxicology1478999PubMedCrossRefGoogle Scholar
  29. 29.
    Cortizo, AM, Caporossi, M, Lettieri, G, Etcheverry, SB 2000Vanadate-induced nitric oxide production: role in osteoblast growth and differentiationEur J Pharmacol400279285PubMedCrossRefGoogle Scholar
  30. 30.
    Xie, MJ, Liu, WP, Yang, YK, Pu, SP, Li, L, Yang, LC, Chen, ZH 2001Synthesis and anti-diabetic activity of several organic carboxylate oxovanadium coordination compounds (in Chinese)Chin J Med Chem11134137Google Scholar
  31. 31.
    Lau, KH, Onishi, T, Wergedal, JE, Singer, FR, Baylink, DJ 1987Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorptionClin Chem33458462PubMedGoogle Scholar
  32. 32.
    Cortizo, AM, Salice, VC, Etcheverry, SB 1994Vanadium compounds. Their action on alkaline phosphatase activityBiol Trace Elem Res41331339PubMedCrossRefGoogle Scholar
  33. 33.
    Verhaeghe, J, Van Herck, E, Van Bree, R, Van Assche, FA, Bouillon, R 1989Osteocalcin during the reproductive cycle in normal and diabetic ratsJ Endocrinol120143151PubMedCrossRefGoogle Scholar
  34. 34.
    Bourrin, S, Ammann, P, Bonjour, JP, Rizzoli, R 2002Recovery of proximal tibia bone mineral density and strength, but not cancellous bone architecture, after long-term bisphosphonate or selective estrogen receptor modulator therapy in aged ratsBone30195200PubMedCrossRefGoogle Scholar
  35. 35.
    Follak, N, Kloting, I, Wolf, E, Merk, H 2004Histomorphometric evaluation of the influence of the diabetic metabolic state on bone defect healing depending on the defect size in spontaneously diabetic BB/OK ratsBone35144152PubMedCrossRefGoogle Scholar
  36. 36.
    Parfitt, AM, Drezner, MK, Glorieux, FH, Kanis, JA, Malluche, H, Meunier, PJ, Ott, SM, Recker, RR 1987Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature CommitteeJ Bone Miner Res2595610PubMedGoogle Scholar
  37. 37.
    Etcheverry, SB, Apella, MC, Baran, EJ 1984A model study of the incorporation of vanadium in boneJ Inorg Biochem20269274PubMedCrossRefGoogle Scholar
  38. 38.
    Verhaeghe, J, Oloumi, G, Van Herck, E, van Bree, R, Dequeker, J, Einhorn, TA, Bouillon, R 1997Effects of long-term diabetes and/or high-dose 17β-estradiol on bone formation, bone mineral density, and strength in ovariectomized ratsBone20421428PubMedCrossRefGoogle Scholar
  39. 39.
    Facchini, DM, Yuen, VG, Battell, ML, McNeill, JH, Grynpas, MD 2006The effects of vanadium treatment on bone in diabetic and non-diabetic ratsBone38368377PubMedCrossRefGoogle Scholar
  40. 40.
    Wallach, S, Feinblatt, J, Avioli, L 1992The bone quality problemCalcif Tissue Int51169172PubMedCrossRefGoogle Scholar
  41. 41.
    Dalstra, M, Huiskes, R, Odgaard, A, van Erning, L 1993Mechanical and textural properties of pelvic trabecular boneJ Biomech27375381Google Scholar
  42. 42.
    Jiang, Y, Zhao, J, Augat, P, Ouyang, X, Lu, Y, Majumdar, S, Genant, HK 1998Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical propertiesJ Bone Miner Res1317831790PubMedCrossRefGoogle Scholar
  43. 43.
    Einhorn, TA, Boskey, AL, Gundberg, CM, Vigorita, VJ, Devlin, VJ, Beyer, MM 1988The mineral and mechanical properties of bone in chronic experimental diabetesJ Orthop Res6317323PubMedCrossRefGoogle Scholar
  44. 44.
    Horcajada-Molteni, MN, Chanteranne, B, Lebecque, P, Davicco, MJ, Coxam, V, Young, A, Barlet, JP 2001Amylin and bone metabolism in streptozotocin-induced diabetic ratsJ Bone Miner Res16958965PubMedCrossRefGoogle Scholar
  45. 45.
    Verhaeghe, J, Suiker, AMH, Einhorn, TA, Geusens, P, Visser, WJ, Van Herck, E, Van Bree, R, Magitsky, S, Bouillon, R 1994Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized ratsJ Bone Miner Res916571667PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang, CY, Wang, B, Lu, S, Li, SF, Wen, LR 2003Effect of insulin on bone formation in streptozotocin-induced diabetic rats (in Chinese)Da Lian Yi Ke Da Xue Xue Bao2598101Google Scholar
  47. 47.
    Verhaeghe J, Thomsen JS, van Bree R, van Herck E, Bouillon R, Mosekilde L (2000) Effects of exercise and disuse on bone remodeling, bone mass, and biomechanical competence in spontaneously diabetic female rats. 27:249–256Google Scholar
  48. 48.
    Wang, WL 1981Diabetic osteoporosis and change of calcium and phosphate (in Chinese)Tianjin Med J9707710Google Scholar
  49. 49.
    Caspary, WF 1973Effect of insulin and experimental diabetes mellitus on the digestive–absorptive function of the small intestineDigestion9248263PubMedGoogle Scholar
  50. 50.
    Shires, R, Teitelbaum, SL, Bergfeld, MA, Fallon, MD, Slatopolsky, E, Avioli, LV 1981The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the ratJ Lab Clin Med97231240PubMedGoogle Scholar
  51. 51.
    Hogan, GR 1990Peripheral erythrocyte levels, hemolysis and three vanadium compoundsExperientia46444446PubMedCrossRefGoogle Scholar
  52. 52.
    Zaporowska, H, Wasilewski, W 1989Some selected peripheral blood and haemopoietic system indices in Wistar rats with chronic vanadium intoxicationComp Biochem PhysiolC175180Google Scholar
  53. 53.
    Zaporowska, H, Wasilewski, W 1992Haematological results of vanadium intoxication in Wistar ratsComp Biochem PhysiolC5761Google Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  1. 1.School of Pharmaceutical Sciences and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
  2. 2.Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations