Journal of Bone and Mineral Metabolism

, Volume 25, Issue 4, pp 205–210

Negative autoregulation of RANKL and c-Src signaling in osteoclasts

  • Keiichiro Yogo
  • Norihiro Ishida-Kitagawa
  • Tatsuo Takeya
REVIEW ARTICLE

Key words

osteoclasts RANKL c-Src SHIP bone resorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, DM, Maraskovsky, E, Billingsley, WL, Dougall, WC, Tometsko, ME, Roux, ER, Teepe, MC, DuBose, RF, Cosman, D, Galibert, L 1997A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell functionNature (Lond)390175179CrossRefGoogle Scholar
  2. 2.
    Darnay, BG, Haridas, V, Ni, J, Moore, PA, Aggarwal, BB 1998Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinaseJ Biol Chem2732055120555PubMedCrossRefGoogle Scholar
  3. 3.
    Wong, BR, Josien, R, Lee, SY, Vologodskaia, M, Steinman, RM, Choi, Y 1998The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptorJ Biol Chem2732835528359PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, N, Odgren, PR, Kim, DK, Marks, SC,Jr, Choi, Y 2000Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgeneProc Natl Acad Sci U S A971090510910PubMedCrossRefGoogle Scholar
  5. 5.
    Li, J, Sarosi, I, Yan, XQ, Morony, S, Capparelli, C,  et al. 2000RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolismProc Natl Acad Sci U S A9715661571PubMedCrossRefGoogle Scholar
  6. 6.
    Naito, A, Azuma, S, Tanaka, S, Miyazaki, T, Takaki, S, Takatsu, K, Nakao, K, Nakamura, K, Katsuki, M, Yamamoto, T, Inoue, J 1999Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient miceGenes Cells4353362PubMedCrossRefGoogle Scholar
  7. 7.
    Lomaga, MA, Yeh, WC, Sarosi, I, Duncan, GS, Furlonger, C,  et al. 1999TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signalingGenes Dev1310151024PubMedGoogle Scholar
  8. 8.
    Teitelbaum, SL, Ross, FP 2003Genetic regulation of osteoclast development and functionNat Rev Genet4638649PubMedCrossRefGoogle Scholar
  9. 9.
    Bucay, N, Sarosi, I, Dunstan, CR, Morony, S, Tarpley, J, Capparelli, C, Scully, S, Tan, HL, Xu, W, Lacey, DL, Boyle, WJ, Simonet, WS 1998Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcificationGenes Dev1212601268PubMedGoogle Scholar
  10. 10.
    Wada, T, Nakashima, T, Hiroshi, N, Penninger, JM 2006RANKL-RANK signaling in osteoclastogenesis and bone diseaseTrends Mol Med121725PubMedCrossRefGoogle Scholar
  11. 11.
    Blair, HC, Robinson, LJ, Zaidi, M 2005Osteoclast signalling pathwaysBiochem Biophys Res Commun328728738PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka, S, Nakamura, I, Inoue, J, Oda, H, Nakamura, K 2003Signal transduction pathways regulating osteoclast differentiation and functionJ Bone Miner Metab21123133PubMedCrossRefGoogle Scholar
  13. 13.
    Ishida, N, Hayashi, K, Hoshijima, M, Ogawa, T, Koga, S, Miyatake, Y, Kumegawa, M, Kimura, T, Takeya, T 2002Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulatorJ Biol Chem2774114741156PubMedCrossRefGoogle Scholar
  14. 14.
    Takayanagi, H, Kim, S, Koga, T, Nishina, H, Isshiki, M, Yoshida, H, Saiura, A, Isobe, M, Yokochi, T, Inoue, J, Wagner, EF, Mak, TW, Kodama, T, Taniguchi, T 2002Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclastsDev Cell3889901PubMedCrossRefGoogle Scholar
  15. 15.
    Ishida, N, Hayashi, K, Hattori, A, Yogo, K, Kimura, T, Takeya, T 2006CCR1 acts downstream of NFAT2 in osteoclastogenesis and enhances cell migrationJ Bone Miner Res214857PubMedCrossRefGoogle Scholar
  16. 16.
    Asagiri, M, Sato, K, Usami, T, Ochi, S, Nishina, H, Yoshida, H, Morita, I, Wagner, EF, Mak, TW, Serfling, E, Takayanagi, H 2005Autoamplification of NFATc1 expression determines its essential role in bone homeostasisJ Exp Med20212611269PubMedCrossRefGoogle Scholar
  17. 17.
    Crotti, TN, Flannery, M, Walsh, NC, Fleming, JD, Goldring, SR, McHugh, KP 2006NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiationGene (Amst)37292102Google Scholar
  18. 18.
    Matsumoto, M, Kogawa, M, Wada, S, Takayanagi, H, Tsujimoto, M, Katayama, S, Hisatake, K, Nogi, Y 2004Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1J Biol Chem2794596945979PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, Y, Sato, K, Asagiri, M, Morita, I, Soma, K, Takayanagi, H 2005Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesisJ Biol Chem2803290532913PubMedCrossRefGoogle Scholar
  20. 20.
    Matsuo, K, Galson, DL, Zhao, C, Peng, L, Laplace, C, Wang, KZQ, Bachler, MA, Amano, H, Aburatani, H, Ishikawa, H, Wagner, EF 2004Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-FosJ Biol Chem2792647526480PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, K, Kim, JH, Lee, J, Jin, HM, Lee, SH, Fisher, DE, Kook, H, Kim, KK, Choi, Y, Kim, N 2005Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesisJ Biol Chem2803520935216PubMedCrossRefGoogle Scholar
  22. 22.
    Ikeda, F, Nishimura, R, Matsubara, T, Tanaka, S, Inoue, J, Reddy, SV, Hata, K, Yamashita, K, Hiraga, T, Watanabe, T, Kukita, T, Yoshioka, K, Rao, A, Yoneda, T 2004Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiationJ Clin Invest114475484PubMedCrossRefGoogle Scholar
  23. 23.
    Umeda, S, Beamer, WG, Takagi, K, Naito, M, Hayashi, S, Yonemitsu, H, Yi, T, Shultz, LD 1999Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone densityAm J Pathol155223233PubMedGoogle Scholar
  24. 24.
    Aoki, K, Didomenico, E, Sims, NA, Mukhopadhyay, K, Neff, L, Houghton, A, Amling, M, Levy, JB, Horne, WC, Baron, R 1999The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant miceBone (NY)25261267Google Scholar
  25. 25.
    Chen, HE, Chang, S, Trub, T, Neel, BG 1996Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1Mol Cell Biol1636853697PubMedGoogle Scholar
  26. 26.
    Zhang, Z, Jimi, E, Bothwell, AL 2003Receptor activator of NF-kappa B ligand stimulates recruitment of SHP-1 to the complex containing TNFR-associated factor 6 that regulates osteoclastogenesisJ Immunol17136203626PubMedGoogle Scholar
  27. 27.
    Stetson, DB, Medzhitov, R 2006Type I interferons in host defenseImmunity25373381PubMedCrossRefGoogle Scholar
  28. 28.
    Takayanagi, H, Kim, S, Matsuo, K, Suzuki, H, Suzuki, T, Sato, K, Yokochi, T, Oda, H, Nakamura, K, Ida, N, Wagner, EF, Taniguchi, T 2002RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-betaNature (Lond)416744749CrossRefGoogle Scholar
  29. 29.
    Coelho, LF, Magno de Freitas Almeida, G, Mennechet, FJ, Blangy, A, Uze, G 2005Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expressionProc Natl Acad Sci U S A1021191711922PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng, H, Yu, X, Collin-Osdoby, P, Osdoby, P 2006RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorptionJ Biol Chem2811580915820PubMedCrossRefGoogle Scholar
  31. 31.
    Hayashi, T, Kaneda, T, Toyama, Y, Kumegawa, M, Hakeda, Y 2002Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formationJ Biol Chem2772788027886PubMedCrossRefGoogle Scholar
  32. 32.
    Becker KL, Müller B, Nylén ES, Cohen R, White JC, Snider RH Jr (2002) Calcitonin gene family of peptides: structure, molecular biology, and effects. In: vol 1, Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, Academic Press, San Diego, pp 619–639Google Scholar
  33. 33.
    Woodrow, JP, Sharpe, CJ, Fudge, NJ, Hoff, AO, Gagel, RF, Kovacs, CS 2006Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactationEndocrinology14740104021PubMedCrossRefGoogle Scholar
  34. 34.
    Jurdic, P, Saltel, F, Chabadel, A, Destaing, O 2006Podosome and sealing zone: specificity of the osteoclast modelEur J Cell Biol85195202PubMedCrossRefGoogle Scholar
  35. 35.
    Spinardi, L, Marchisio, PC 2006Podosomes as smart regulators of cellular adhesionEur J Cell Biol85191194PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas, SM, Brugge, JS 1997Cellular functions regulated by Src family kinasesAnnu Rev Cell Dev Biol13513609PubMedCrossRefGoogle Scholar
  37. 37.
    Kumagai, N, Ohno, K, Tameshige, R, Hoshijima, M, Yogo, K, Ishida, N, Takeya, T 2004Induction of mouse c-src in RAW264 cells is dependent on AP-1 and NF-kappaB and important for progression to multinucleated cell formationBiochem Biophys Res Commun325758768PubMedCrossRefGoogle Scholar
  38. 38.
    Soriano, P, Montgomery, C, Geske, R, Bradley, A 1991Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in miceCell64693702PubMedCrossRefGoogle Scholar
  39. 39.
    Lowe, C, Yoneda, T, Boyce, BF, Chen, H, Mundy, GR, Soriano, P 1993Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclastsProc Natl Acad Sci U S A9044854489PubMedCrossRefGoogle Scholar
  40. 40.
    Boyce, BF, Yoneda, T, Lowe, C, Soriano, P, Mundy, GR 1992Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in miceJ Clin Invest9016221627PubMedGoogle Scholar
  41. 41.
    Lakkakorpi, PT, Nakamura, I, Young, M, Lipfert, L, Rodan, GA, Duong, LT 2001Abnormal localisation and hyperclustering of (alpha)(V)(beta)(3) integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclastsJ Cell Sci114149160PubMedGoogle Scholar
  42. 42.
    Tanaka, S, Amling, M, Neff, L, Peyman, A, Uhlmann, E, Levy, JB, Baron, R 1996c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorptionNature (Lond)383528531CrossRefGoogle Scholar
  43. 43.
    Duong, LT, Lakkakorpi, PT, Nakamura, I, Machwate, M, Nagy, RM, Rodan, GA 1998PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinaseJ Clin Invest102881892PubMedCrossRefGoogle Scholar
  44. 44.
    Nakamura, I, Jimi, E, Duong, LT, Sasaki, T, Takahashi, N, Rodan, GA, Suda, T 1998Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclastsJ Biol Chem2731114411149PubMedCrossRefGoogle Scholar
  45. 45.
    Sanjay, A, Houghton, A, Neff, L, DiDomenico, E, Bardelay, C, Antoine, E, Levy, J, Gailit, J, Bowtell, D, Horne, WC, Baron, R 2001Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motilityJ Cell Biol152181195PubMedCrossRefGoogle Scholar
  46. 46.
    Miyazaki, T, Sanjay, A, Neff, L, Tanaka, S, Horne, WC, Baron, R 2004Src kinase activity is essential for osteoclast functionJ Biol Chem2791766017666PubMedCrossRefGoogle Scholar
  47. 47.
    Koga, S, Yogo, K, Yoshikawa, K, Samori, H, Goto, M, Uchida, T, Ishida, N, Takeya, T 2005Physical and functional association of c-Src and adhesion and degranulation promoting adaptor protein (ADAP) in osteoclastogenesis in vitroJ Biol Chem2803156431571PubMedCrossRefGoogle Scholar
  48. 48.
    Chellaiah, M, Fitzgerald, C, Alvarez, U, Hruska, K 1998c-Src is required for stimulation of gelsolin-associated phosphatidylinositol 3-kinaseJ Biol Chem2731190811916PubMedCrossRefGoogle Scholar
  49. 49.
    Chellaiah, MA, Biswas, RS, Yuen, D, Alvarez, UM, Hruska, KA 2001Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolinJ Biol Chem2764743447444PubMedCrossRefGoogle Scholar
  50. 50.
    Lakkakorpi, PT, Wesolowski, G, Zimolo, Z, Rodan, GA, Rodan, SB 1997Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreadingExp Cell Res237296306PubMedCrossRefGoogle Scholar
  51. 51.
    Damen, JE, Liu, L, Rosten, P, Humphries, RK, Jefferson, AB, Majerus, PW, Krystal, G 1996The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphataseProc Natl Acad Sci U S A9316891693PubMedCrossRefGoogle Scholar
  52. 52.
    Lioubin, MN, Algate, PA, Tsai, S, Carlberg, K, Aebersold, A, Rohrschneider, LR 1996p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activityGenes Dev1010841095PubMedCrossRefGoogle Scholar
  53. 53.
    Golden, LH, Insogna, KL 2004The expanding role of PI3-kinase in boneBone (NY)34312Google Scholar
  54. 54.
    Takeshita, S, Namba, N, Zhao, JJ, Jiang, Y, Genant, HK, Silva, MJ, Brodt, MD, Helgason, CD, Kalesnikoff, J, Rauh, MJ, Humphries, RK, Krystal, G, Teitelbaum, SL, Ross, FP 2002SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclastsNat Med8943949PubMedCrossRefGoogle Scholar
  55. 55.
    Sugatani, T, Alvarez, U, Hruska, KA 2003PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motilityJ Biol Chem27850015008PubMedCrossRefGoogle Scholar
  56. 56.
    Yogo, K, Mizutamari, M, Mishima, K, Takenouchi, H, Ishida-Kitagawa, N, Sasaki, T, Takeya, T 2006Src homology 2 (SH2)-containing 5′-inositol phosphatase localizes to podosomes, and the SH2 domain is implicated in the attenuation of bone resorption in osteoclastsEndocrinology14733073317PubMedCrossRefGoogle Scholar
  57. 57.
    Horne, WC, Sanjay, A, Bruzzaniti, A, Baron, R 2005The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and functionImmunol Rev208106125PubMedCrossRefGoogle Scholar
  58. 58.
    Simonet, WS, Lacey, DL, Dunstan, CR, Kelley, M, Chang, MS,  et al. 1997Osteoprotegerin: a novel secreted protein involved in the regulation of bone densityCell89309319PubMedCrossRefGoogle Scholar
  59. 59.
    Tsuda, E, Goto, M, Mochizuki, S, Yano, K, Kobayashi, F, Morinaga, T, Higashio, K 1997Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesisBiochem Biophys Res Commun234137142PubMedCrossRefGoogle Scholar
  60. 60.
    Yasuda, H, Shima, N, Nakagawa, N, Mochizuki, SI, Yano, K, Fujise, N, Sato, Y, Goto, M, Yamaguchi, K, Kuriyama, M, Kanno, T, Murakami, A, Tsuda, E, Morinaga, T, Higashio, K 1998Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitroEndocrinology13913291337PubMedCrossRefGoogle Scholar
  61. 61.
    Takayanagi, H, Ogasawara, K, Hida, S, Chiba, T, Murata, S, Sato, K, Takaoka, A, Yokochi, T, Oda, H, Tanaka, K, Nakamura, K, Taniguchi, T 2000T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gammaNature (Lond)408600605CrossRefGoogle Scholar
  62. 62.
    Moreno, JL, Kaczmarek, M, Keegan, AD, Tondravi, M 2003IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKLBlood10210781086PubMedCrossRefGoogle Scholar
  63. 63.
    Abe, E, Marians, RC, Yu, W, Wu, XB, Ando, T, Li, Y, Iqbal, J, Eldeiry, L, Rajendren, G, Blair, HC, Davies, TF, Zaidi, M 2003TSH is a negative regulator of skeletal remodelingCell115151162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • Keiichiro Yogo
    • 1
  • Norihiro Ishida-Kitagawa
    • 1
  • Tatsuo Takeya
    • 1
  1. 1.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan
  2. 2.Laboratory of Animal Reproduction and Physiology, Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations