Advertisement

Journal of Marine Science and Technology

, Volume 24, Issue 4, pp 1256–1264 | Cite as

Numerical and experimental study on unsteady behavior of cavitating flow around a two-dimensional wedge-shaped body

  • Ji-Hye Kim
  • So-Won Jeong
  • Byoung-Kwon AhnEmail author
Original article
  • 152 Downloads

Abstract

In this study, the numerical analysis of unsteady cavitating turbulent flow behind a two-dimensional wedge-shaped body is performed using the commercial program STAR-CCM+ as a part of a fundamental study on the control fin of supercavitating underwater vehicles. We explore the vortex structures in the near and far wake fields and investigate the effect of cavity growth on the periodic characteristics of wake flow (σ = 1.0 ~ 2.0). Pressure fluctuations above the wedge are converted to sound pressure levels in the frequency domain via the fast Fourier Transform. As a result, we confirm that the shedding frequency of the vortices behind the body is strongly affected by the development of cavitation. As the cavitation number decreases, the frequency of the vortex in the near wake region decreases, and the force accelerating the Karman vortex in the far wake region decreases. In addition, we clearly validate the wake flow characteristics of a two-dimensional wedge-shaped body by comparing our numerical results with the experimental results carried out at the Chungnam National University Cavitation Tunnel (CNU-CT) at three different cavitation numbers (σ = 1.3, 1.5, and 2.0). Observations using a high-speed camera and measurements of pressure fluctuation above the test model are carried out to demonstrate the wake flow characteristics.

Keywords

Cavitating flow Multiphase flow Wake flow Vortex shedding Cavitation tunnel 

Notes

Acknowledgements

This work was supported by research fund of Chungnam National University.

Supplementary material

773_2019_623_MOESM1_ESM.avi (6.2 mb)
Supplementary material 1 (AVI 6334 KB)
773_2019_623_MOESM2_ESM.avi (3.8 mb)
Supplementary material 2 (AVI 3934 KB)

References

  1. 1.
    Ahn BK, Lee CS, Kim HT (2010) Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators. Int J Nav Arch Ocean Eng 2(1):39–44CrossRefGoogle Scholar
  2. 2.
    Ahn BK, Lee TK, Kim HT, Lee CS (2012) Experimental investigation of supercavitating flows. Int J Nav Arch Ocean Eng 4(2):123–131CrossRefGoogle Scholar
  3. 3.
    Savchenko Y (2001) Supercavitation-problems and perspectives. In: Proc. of the 4th International Symposium on Cavitation, pp 1–8Google Scholar
  4. 4.
    Serebryakov VV (2001) Some models of prediction of supercavitation flows based on slender body approximation. In: Proc. of the 4th International Symposium on Cavitation, pp 1–13Google Scholar
  5. 5.
    Kirschner IN, Kring DC, Stokes AW, Fine NE, Uhlman JS Jr (2002) Control strategies for supercavitating vehicles. Modal Anal 8(2):219–242zbMATHGoogle Scholar
  6. 6.
    Pendar MR, Roohi E (2016) Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Eng 112(2):287–306CrossRefGoogle Scholar
  7. 7.
    Dzielski J, Kurdila A (2003) A benchmark control problem for supercavitating vehicles and an initial investigation of solutions. Modal Anal 9(7):791–804zbMATHGoogle Scholar
  8. 8.
    Okajima A (1982) Strouhal numbers of rectangular cylinders. J Fluid Mech 123:379–398CrossRefGoogle Scholar
  9. 9.
    Kourta A, Boisson HC, Chassaing P, Minh HH (1987) Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. J Fluid Mech 181:141–161CrossRefGoogle Scholar
  10. 10.
    Nakagawa T (1989) Vortex shedding mechanism from a triangular prism in a subsonic flow. Fluid Dyn Res 5(2):69–81CrossRefGoogle Scholar
  11. 11.
    El Wahed AK, Johnson MW, Sproston JL (1993) Numerical study of vortex shedding from different shaped bluff bodies. Flow Meas Instrum 4(4):233–240CrossRefGoogle Scholar
  12. 12.
    Johansson SH, Davidson L, Olsson E (1993) Numerical simulation of vortex shedding past triangular cylinders at high reynolds number using a k-e turbulence model. Int J Numer Methods Fluids 16(10):859–878CrossRefGoogle Scholar
  13. 13.
    Bentley JP, Mudd JW (2003) Vortex shedding mechanisms in single and dual bluff bodies. Flow Meas Instrum 14(1–2):23–31CrossRefGoogle Scholar
  14. 14.
    Ozgoren M (2006) Flow structure in the downstream of square and circular cylinders. Flow Meas Instrum 17(4):225–235CrossRefGoogle Scholar
  15. 15.
    Peng J, Fu X, Chen Y (2008) Experimental investigations of Strouhal number for flows past dual triangulate bluff bodies. Flow Meas Instrum 19(6):350–357CrossRefGoogle Scholar
  16. 16.
    Yagmur S, Dogan S, Aksoy MH, Goktepeli I, Ozgoren M (2017) Comparison of flow characteristics around an equilateral triangular cylinder via PIV and large Eddy simulation methods. Flow Meas Instrum 55:23–36CrossRefGoogle Scholar
  17. 17.
    Young JO, Holl JW (1966) Effects of cavitation on periodic wakes behind symmetric wedges. J Basic Eng 88(1):163–176CrossRefGoogle Scholar
  18. 18.
    Ramamurthy AS, Balachandar R (1990) The near wake characteristics of cavitating bluff sources. J Fluids Eng-Trans ASME 112(4):492–495CrossRefGoogle Scholar
  19. 19.
    Belahadji B, Franc JP, Michel JM (1995) Cavitation in the rotational structures of a turbulent wake. J Fluid Mech 287:383–403CrossRefGoogle Scholar
  20. 20.
    Pendar MR, Roohi E (2018) Cavitation characteristics around a sphere: an LES investigation. Int J Multiph Flow 98(1):1–23MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Proc. of the 4th International Conference on Multiphase Flow, pp 1–12Google Scholar
  22. 22.
    Kim JH, Ahn BK (2018) Numerical analysis of supercavitating flow around axisymmetric underwater objects using a viscous-potential method. J Mar Sci Technol 23(2):364–377CrossRefGoogle Scholar
  23. 23.
    Franc JP, Michel JM (2004) Fundamentals of cavitation. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar

Copyright information

© The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2019

Authors and Affiliations

  1. 1.Department of Naval Architecture and Ocean EngineeringChungnam National UniversityDaejonRepublic of Korea

Personalised recommendations