Advertisement

On the loss of stability of periodic oscillations and its relevance to ship capsize

  • A. Maki
  • L. N. Virgin
  • N. Umeda
  • T. Ueta
  • Y. Miino
  • M. Sakai
  • H. Kawakami
Original article
  • 93 Downloads

Abstract

This research revisits the analysis of roll motion and the possible capsize of floating vessels in beam seas. Many analytical investigations of this topic have adopted the softening Duffing equation, which is similar to the ship roll equation of motion. Here we focus on the loss of stability of periodic oscillations and its relevance to ship capsize. Previous researchers have found the thresholds of the saddle-node, flip, and heteroclinic bifurcations. They derived the flip condition from the negative stiffness condition in a Mathieu type variational equation. In our revisited analysis, we show that this threshold is identical to a pitchfork bifurcation. On the other hand, we simultaneously find that the generated asymmetry solution is unstable due to the limitation of the first order analysis.

Keywords

Nonlinear dynamics Softening Duffing equation Capsizing Pitchfork bifurcation 

Notes

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science (JSPS KAKENHI Grant number 15H02327). The authors would like to thank Enago (http://www.enago.jp) for the English language review.

References

  1. 1.
    Nayfeh AH, Khdeir AA (1986) Nonlinear rolling of ships in regular beam seas. Int Shipbuild Prog 33(379):40–49CrossRefGoogle Scholar
  2. 2.
    Nayfeh AH, Khdeir AA (1986) Nonlinear rolling of biased ships in regular beam seas. Int Shipbuild Prog 33(381):84–93CrossRefGoogle Scholar
  3. 3.
    Nayfeh AH, Sanchez NE (1986) Chaos and dynamic instability in the rolling motion of ships. In: 17th symposium on naval hydrodynamics, pp. 617–630Google Scholar
  4. 4.
    Thompson JMT, Bishop SR, Leung LM (1987) Fractal basins and chaotic bifurcations prior to escape from a potential well. Phys Lett A 121(3):116–120MathSciNetCrossRefGoogle Scholar
  5. 5.
    Thompson JMT, Ueda Y (1989) Basin boundary metamorphoses in the canonical escape equation. Dyn Stab Syst 4(3&4):285–294MathSciNetzbMATHGoogle Scholar
  6. 6.
    Thompson JMT (1989) Chaotic phenomena triggering the escape from a potential well. Proc R Soc Lond A421:195–225MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Virgin LN (1987) The Nonlinear rolling response of a vessel including chaotic motions leading to capsize in regular seas. Appl Ocean Res 9(2):89–95CrossRefGoogle Scholar
  8. 8.
    Virgin LN (1988) On the harmonic response of an oscillator with unsymmetric restoring force. J Sound Vib 126(1):157–165MathSciNetCrossRefGoogle Scholar
  9. 9.
    Virgin LN (1989) Approximate criterion for capsize based on deterministic dynamics. Dyn Stab Syst 4(1):55–70MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kan M, Taguchi H (1990) Capsizing of a ship in quartering seas (part 2-chaos and fractal in capsizing phenomenon). J Jpn Soc Nav Archit Ocean Eng 168:211–220CrossRefGoogle Scholar
  11. 11.
    Kan M, Taguchi H (1991) Capsizing of a ship in quartering seas (part 3-chaos and fractal in asymmetric capsizing equation). J Jpn Soc Nav Archit Ocean Eng 169:1–13Google Scholar
  12. 12.
    Falzarano JM, Shaw SW, Troesch AW (1992) Application of global methods for analyzing dynamical systems to ship rolling motion and capsizing. Int J Bifurc Chaos 2(1):101–115MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Spyrou K, Cotton B, Gurd B (2002) Analytical expressions of capsize boundary for a ship with roll bias in beam waves. J Ship Res 46(3):167–174Google Scholar
  14. 14.
    Wu W, McCue L (2008) Application of the extended Melnikov’s method for single-degree-of-freedom vessel roll motion. Ocean Eng 35(17–18):1739–1746CrossRefGoogle Scholar
  15. 15.
    Maki A, Umeda N, Ueta T (2010) Melnikov integral formula for beam sea roll motion utilizing a non-Hamiltonian exact heteroclinic orbit. J Mar Sci Technol 15(1):102–106CrossRefGoogle Scholar
  16. 16.
    Maki A, Umeda N, Ueta T (2014) Melnikov integral formula for beam sea roll motion utilizing a non-Hamiltonian exact heteroclinic orbit: analytic extension and numerical validation. J Mar Sci Technol 19(3):257–264CrossRefGoogle Scholar
  17. 17.
    Hayashi C (1985) Nonlinear oscillations in physical systems. McGraw-Hill, New York (reprinted University Press, Princeton) zbMATHGoogle Scholar
  18. 18.
    Holmes PJ, Rand DA (1976) The bifurcation of Duffing’s equation: an application of catastrophe theory. J Sound Vib 44(2):237–253CrossRefzbMATHGoogle Scholar
  19. 19.
    Kawakami H (1984) Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters. IEEE Trans Circuits Syst 31(3):248–260MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kawakami H (1999) In: Webster JG (ed) Nonlinear dynamic phenomena in circuits, wiley encyclopedia of electrical and electronics engineering, vol 17. Wiley, New YorkGoogle Scholar
  21. 21.
    Tsumoto K, Ueta T, Yoshinaga T, Kawakami H (2012) Bifurcation analyses of nonlinear dynamical systems: from theory to numerical computations. Nonlinear Theory Appl IEICE 3(4):458–476,CrossRefGoogle Scholar
  22. 22.
    Virgin LN, Erickson BK (1994) A new approach to the overturning stability of floating structures. Ocean Eng 21:67–80CrossRefGoogle Scholar
  23. 23.
    Miino Y, Ueta T, Kawakami H, Maki A, Umeda N (2018) Local stability and bifurcation analysis of the softening Duffing equation by numerical computation. In: Proceeding of the 13th international conference on the stability of ships and ocean vehicles, Kobe, JapanGoogle Scholar

Copyright information

© JASNAOE 2018

Authors and Affiliations

  • A. Maki
    • 1
  • L. N. Virgin
    • 2
  • N. Umeda
    • 1
  • T. Ueta
    • 3
  • Y. Miino
    • 4
  • M. Sakai
    • 1
  • H. Kawakami
    • 5
  1. 1.Department of Naval Architecture and Ocean Engineering, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.School of EngineeringDuke UniversityDurhamUSA
  3. 3.Center for Administration of Information Technology Tokushima UniversityTokushimaJapan
  4. 4.Graduate School of Advanced Technology and Science, System Innovation EngineeringTokushima UniversityTokushimaJapan
  5. 5.Professor Emeritus of Tokushima UniversityTokushimaJapan

Personalised recommendations