Skip to main content
Log in

An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In the present article, the classical two- and three-dimensional lifting theories are generalized to the biplane operating in proximity to a free surface. The singularity distribution method is employed to calculate the lifting force for a two-dimensional biplane subjected to wing-in-ground effect in the vicinity of a free surface, and the three-dimensional correction is carried out by the aid of the Prandtl lifting line theory. The essential techniques lie in finding the three-dimensional Green’s function for the system of horseshoe vortices operating above a free surface and ensuring numerical implementation. Extensive numerical examples are carried out to show the lift coefficient for the two- and three-dimensional biplanes in the vicinity of a free surface with the variation of the clearance-to-chord ratio and the height-to-chord ratio. Incidentally, the induced (inviscid) drag coefficients as well as the lift-to-drag ratio for a three-dimensional biplane are also computed. Good agreement can be found among results obtained from this study and the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Rozhdestvensky K (2000) Aerodynamics of a lifting system in extreme ground effect, 1st edn. Springer, Berlin, p 183

    Book  MATH  Google Scholar 

  2. Gall PD, Smith HC (1987) Aerodynamic characteristics of biplanes with winglets. J Aircr AIAA 24:518–522

    Article  Google Scholar 

  3. Han C, Cho J (2005) Unsteady trailing vortex evolution behind a wing in ground effect. J Aircr AIAA 42:429–434

    Article  Google Scholar 

  4. Yang W, Lin F, Yang Z (2010) Three-dimensional ground viscous effect on study of wing-in-ground effect. In: The third international conference on modelling and simulation (ICMS2010), Wuxi, pp 165–168

  5. Ahmed MR, Sharma SD (2005) An investigation on the aerodynamics of a symmetrical airfoil in ground effect. Exp Thermal Fluid Sci 29:633–647

    Article  Google Scholar 

  6. Jung KH, Chun HH, Kim HJ (2008) Experimental investigation of wing-in-ground effect with a NACA6409 section. J Mar Sci Technol 13:317–327

    Article  Google Scholar 

  7. Ahmed NR, Takasaki T, Kohama Y (2007) Aerodynamics of a NACA 4412 airfoil in ground effect. AIAA J 45:37–47

    Article  Google Scholar 

  8. Tan CH, Plotkin A (1986) Lifting-line solution for a symmetrical thin wing in ground effect. AIAA J 24:1193–1194

    Article  MATH  Google Scholar 

  9. Widnall SE, Barrows TM (1970) An analytic solution for two- and three-dimensional wing in ground effect. J Fluid Mech 41:769–792

    Article  MATH  Google Scholar 

  10. Dragos L (1990) Subsonic flow past thick wing in ground effect, lifting line theory. Acta Mech 82:49–60

    Article  MATH  Google Scholar 

  11. Dragos L, Dinu A (1995) A direct boundary integral equations method to subsonic flow with circulation past thin airfoils in ground effect. Comput Methods Appl Mech Eng 121:163–176

    Article  MathSciNet  MATH  Google Scholar 

  12. Deese JE, Agarwa RK (1986) Euler calculation for flow over a wing in ground effect. AIAA J 86:10–15

    Google Scholar 

  13. Hsiun CM, Chen CK (1996) Aerodynamic characteristics of a two-dimensional airfoil with ground effect. J Aircr AIAA 33:386–392

    Article  Google Scholar 

  14. Park K, Lee J (2008) Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effect. J Mech Sci Technol 22:2578–2589

    Article  Google Scholar 

  15. Zong Z, Liang H, Zhou L (2012) Lifting line theory for wing-in-ground effect in proximity to a free surface. J Eng Math 74:143–158

    Article  MathSciNet  MATH  Google Scholar 

  16. Suzuki K, Ikehata M (1994) Free surface effect of wig advancing over the still water surface. In: Proceeding of the international conference on hydrodynamics (ICHD 1994), Wuxi, pp 254–260

  17. Barber TJ (2007) A study of water surface deformation due to tip vortices of a wing-in-ground effect. J Ship Res 51:182–186

    Google Scholar 

  18. Liang H, Zong Z (2011) A subsonic lifting surface theory for wing-in-ground effect. Acta Mech 219:203–217

    Article  MATH  Google Scholar 

  19. Moschetta JM, Thipyopas C (2007) Aerodynamic performance of a biplane micro air vehicle. J Aircr AIAA 44:291–299

    Article  Google Scholar 

  20. Traub LW (2001) Theoretical and experimental investigation of biplane delta wings. J Aircr AIAA 38:536–546

    Article  Google Scholar 

  21. Prandtl L (1921) Application of modern hydrodynamics aeronautics, NACA Rept. 116

  22. Van Dyke MD (1964) Lifting-line theory as a singular perturbation problem. Appl Math Mech 28:90–101

    Article  MathSciNet  MATH  Google Scholar 

  23. Guermond JL, Sellier A (1991) A unified lifting-line theory. J Fluid Mech 229:427–451

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie N, Vassalos D (2007) Performance analysis of 3D hydrofoil under free surface. Ocean Eng 34:1257–1264

    Article  Google Scholar 

  25. Mizutani N, Suzuki K (2001) Numerical analysis of 3-D WIG advancing over the still water surface. J Soc Nav Archit Japan 174:15–26 (in Japanese)

    Google Scholar 

  26. Scullen DC, Tuck EO (2011) Free-surface elevation due to moving pressure distributions in three dimensions. J Eng Math 70:29–42

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen TC, Yeung RW (2011) Unsteady three-dimensional sources for a two-layer fluid of finite depth and their applications. J Eng Math 70:67–91

    Google Scholar 

  28. Newman JN (1977) Marine hydrodynamics. MIT Press, Massachusetts

  29. Voitkunskii YI (1988) Resistance to the Motion of Ships (in Russian). Sudostroenie, Leningrad

    Google Scholar 

  30. Katz J, Plotkin A (1991) Low-speed aerodynamics: from wing theory to panel methods. McGraw-Hill, Inc, Singapore

    Google Scholar 

  31. Lan CE, Fasce MH (1976) Application of an improved nonlinear lifting-line theory. AIAA J 14:404–407

    Article  Google Scholar 

  32. Van Dyke M (1975) Perturbation methods in fluid mechanics. Parabolic Press, Stanford

    MATH  Google Scholar 

  33. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications, New York

    MATH  Google Scholar 

  34. Noblesse F (1981) Alternative integral representations for the Green function of the theory of ship wave resistance. J Eng Math 15:241–265

    Article  MATH  Google Scholar 

  35. Noblesse F (1982) The Green function in the theory of radiation and diffraction of regular water waves by a body. J Eng Math 16:137–169

    Article  MathSciNet  MATH  Google Scholar 

  36. Smith AMO, Giesing JP, Hess JL (1963) Calculation of waves and wave resistance for bodies moving on or beneath the surface of the sea. Report No. 31488a. Douglas Aircraft Co., Long Beach

    Google Scholar 

  37. Ariyur KB (2005) Prediction of dynamic ground effect through modified lifting line theory. AIAA paper 2005-4610, 23rd AIAA applied aerodynamics conference

Download references

Acknowledgments

The present work was supported by the National Natural Science Foundation of China (Grant No. 50921001), National Key Basic Research Special Foundation of China (Grant No. 2010CB832704) and Scientific Project for High-tech Ships: Key Technical Research on the Semi-planning Hybrid Fore-body Trimaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zong.

Appendices

Appendix 1

Equations 17 and 18 are integral equations. For the integral equation with one integrand, an analytical solution may be derived. However, obtaining the analytical solution to an integral equation with more than two integrands is almost impossible. Thus, we should seek the solution to Eqs. 17 or 18 from a numerical position. Here, we only exhibit the numerical solution to Eq. 14.

The purpose of solving Eq. 17 is obtaining the numerical solution to the vortex strength distribution. By separating the real and imaginary parts of Eq. 17, we can obtain the vertical velocity component

$$ \begin{aligned} v_{\text{lv}} & = \frac{1}{2\pi }\int\limits_{0}^{c} {\frac{{\gamma_{\text{l}} \left( \xi \right){\text{d}}\xi }}{x - \xi }} - \frac{1}{2\pi }\int\limits_{0}^{c} {\frac{{\gamma_{\text{l}} \left( \xi \right)\left( {x - \xi } \right){\text{d}}\xi }}{{\left( {x - \xi } \right)^{2} + 4h^{2} }}} \\ & \quad - Re\int\limits_{0}^{c} {\frac{{{\text{i}}ak\gamma_{\text{l}} \left( \xi \right)}}{\pi }{\text{d}}\xi \int\limits_{0}^{\infty } {\frac{{{\text{e}}^{{ik\left( {x - \xi + 2{\text{i}}h} \right)}} }}{{k - \mu + a\left( {k + \mu } \right)}}{\text{d}}k} } \\ & \quad - \int\limits_{0}^{c} {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} \gamma_{1} \left( \xi \right){\text{e}}^{{ - 2k_{0} h}} \cos k_{0} \left( {x - \xi } \right){\text{d}}\xi } \\ & \quad + \frac{1}{2\pi }\int\limits_{0}^{c} {\frac{{\gamma_{\text{u}} \left( \xi \right)\left( {x - \xi } \right){\text{d}}\xi }}{{\left( {x - \xi } \right)^{2} + d^{2} }}} - \frac{1}{2\pi }\int\limits_{0}^{c} {\frac{{\gamma_{\text{u}} \left( \xi \right)\left( {x - \xi } \right){\text{d}}\xi }}{{\left( {x - \xi } \right)^{2} + \left( {2h + d} \right)^{2} }}} \\ & \quad - Re\int\limits_{0}^{c} {\frac{{{\text{i}}ak\gamma_{\text{u}} \left( \xi \right)}}{\pi }{\text{d}}\xi \int\limits_{0}^{\infty } {\frac{{{\text{e}}^{{ik\left( {x - \xi + 2{\text{i}}h + {\text{i}}d} \right)}} }}{{k - \mu + a\left( {k + \mu } \right)}}{\text{d}}k} } \\ & \quad - \int\limits_{0}^{c} {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} \gamma_{\text{u}} \left( \xi \right){\text{e}}^{{ - k_{0} \left( {2h + d} \right)}} \cos k_{0} \left( {x - \xi } \right){\text{d}}\xi }. \end{aligned} $$
(55)

In Eq. 55, the Kutta condition stating γ u = γ l = 0 at the trailing edge should be imposed. For the purpose of solving Eq. 55 numerically, the transformation into the trigonometric variables is introduced. The length scale can be expressed as

$$ x = \frac{c}{2}\left( {1 - \cos \theta } \right),\quad \xi = \frac{c}{2}\left( {1 - \cos \theta^{\prime}} \right) , $$
(56)

and its derivative is

$$ {\text{d}}\xi = \frac{c}{2}\sin \theta^{\prime}{\text{d}}\theta^{\prime} . $$
(57)

It should be noted from Eq. 56 that the trailing edge is at θ = 0, and the leading edge is at θ = π. By taking the Kutta condition into account, the vortex distribution can be expanded in the form of trigonometric series [28, 29]

$$ \gamma_{\text{l}} = 2U\left[ {A_{0} \cot \left( {\frac{1}{2}\theta^{\prime}} \right) + \sum\limits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}} } \right] , $$
(58)

and

$$ \gamma_{\text{u}} = 2U\left[ {B_{0} \cot \left( {\frac{1}{2}\theta^{\prime}} \right) + \sum\limits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}} } \right] . $$
(59)

Equations 58 and 59 are equal to zero at θ = π. Substituting Eqs. 5659 into Eq. 55, we can obtain

$$ \begin{aligned} v_{\text{lv}} = & - UA_{0} + U\sum\limits_{n = 1}^{\infty } {A_{n} \cos n\theta } \\ & \quad - \frac{1}{\pi }\int\limits_{0}^{\pi } {\frac{{U\left[ {A_{0} \left( {1 + \cos \theta^{\prime}} \right) + \sum\nolimits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} } \right]\left( {\cos \theta - \cos \theta^{\prime}} \right){\text{d}}\theta^{\prime}}}{{\left( {\cos \theta - \cos \theta^{\prime}} \right)^{2} + 16\left( {{h \mathord{\left/ {\vphantom {h c}} \right. \kern-\nulldelimiterspace} c}} \right)^{2} }}} \\ & \quad - Re\int\limits_{0}^{\pi } {\frac{{{\text{i}}akcU}}{\pi }\left[ {A_{0} \left( {1 + \cos \theta^{\prime}} \right) + \sum\limits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} } \right]{\text{e}}^{{\chi_{\text{l}} }} E_{1} \left( {\chi_{\text{l}} } \right){\text{d}}\theta^{\prime}} \\ & \quad - \int\limits_{0}^{\pi } {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} cU{\text{e}}^{{ - 2k_{0} h}} A_{0} \left( {1 + \cos \theta^{\prime}} \right)\cos \left[ {\frac{{ck_{0} }}{2}\left( {\cos \theta - \cos \theta^{\prime}} \right)} \right]{\text{d}}\theta^{\prime}} \\ & \quad - \int\limits_{0}^{\pi } {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} cU{\text{e}}^{{ - 2k_{0} h}} \sum\limits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} \cos \left[ {\frac{{ck_{0} }}{2}\left( {\cos \theta - \cos \theta^{\prime}} \right)} \right]{\text{d}}\theta^{\prime}} \\ & \quad + \frac{1}{\pi }\int\limits_{0}^{\pi } {\frac{{U\left[ {B_{0} \left( {1 + \cos \theta^{\prime}} \right) + \sum\nolimits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} } \right]\left( {\cos \theta - \cos \theta^{\prime}} \right){\text{d}}\theta^{\prime}}}{{\left( {\cos \theta - \cos \theta^{\prime}} \right)^{2} + 4\left( {{d \mathord{\left/ {\vphantom {d c}} \right. \kern-\nulldelimiterspace} c}} \right)^{2} }}} \\ & \quad - \frac{1}{\pi }\int\limits_{0}^{\pi } {\frac{{U\left[ {B_{0} \left( {1 + \cos \theta^{\prime}} \right) + \sum\nolimits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} } \right]\left( {\cos \theta - \cos \theta^{\prime}} \right){\text{d}}\theta^{\prime}}}{{\left( {\cos \theta - \cos \theta^{\prime}} \right)^{2} + 4\left[ {{{\left( {2h + d} \right)} \mathord{\left/ {\vphantom {{\left( {2h + d} \right)} c}} \right. \kern-\nulldelimiterspace} c}} \right]^{2} }}} \\ & \quad - Re\int\limits_{0}^{\pi } {\frac{{{\text{i}}akcU}}{\pi }\left[ {B_{0} \left( {1 + \cos \theta^{\prime}} \right) + \sum\limits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} } \right]{\text{e}}^{{\chi_{u} }} E_{1} \left( {\chi_{\text{u}} } \right){\text{d}}\theta^{\prime}} \\ & \quad - \int\limits_{0}^{\pi } {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} cU{\text{e}}^{{ - k_{0} \left( {2h + d} \right)}} B_{0} \left( {1 + \cos \theta^{\prime}} \right)\cos \left[ {\frac{{ck_{0} }}{2}\left( {\cos \theta - \cos \theta^{\prime}} \right)} \right]{\text{d}}\theta^{\prime}} \\ & \quad - \int\limits_{0}^{\pi } {\frac{{a\left( {1 - a} \right)}}{a + 1}k_{0} cU{\text{e}}^{{ - k_{0} \left( {2h + d} \right)}} \sum\limits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}\sin \theta^{\prime}} \cos \left[ {\frac{{ck_{0} }}{2}\left( {\cos \theta - \cos \theta^{\prime}} \right)} \right]{\text{d}}\theta^{\prime}} \\ \end{aligned} $$
(60)

where the trigonometric relationship \( \cos \left( {n - 1} \right)\theta - \cos \left( {n + 1} \right)\theta = 2\sin \theta \sin n\theta \) and the complex exponential integral E 1 are used. In addition, the expressions of χ l and χ u are

$$ \chi_{\text{l}} = - \frac{1 - a}{1 + a}2\mu h + {\text{i}}\mu \frac{c}{2}\frac{1 - a}{1 + a}\left( {\cos \theta^{\prime} - \cos \theta } \right) $$
(61)

and

$$ \chi_{\text{u}} = - \frac{1 - a}{1 + a}\mu \left( {2h + d} \right) + {\text{i}}\mu \frac{c}{2}\frac{1 - a}{1 + a}\left( {\cos \theta^{\prime} - \cos \theta } \right) $$
(62)

Equation (56) becomes a linear equation system with N unknown numbers. In the same way, Eq. 18 can also be rewritten in the same form by the aid of the trigonometric series. Then, unknown numbers of the linear equation system becomes 2N. Finally, we can obtain the vortex strength distribution along the lower and upper foils by solving the 2N-dimensional linear system of equation.

Appendix 2

In this appendix, we shall give a general approach to solve the integro-differential equation. Calculating the derivative of Eq. 27 with respect to z at x = 0 and z = h yields the velocity of downwash:

$$ w_{\text{W}} = \left. {\frac{{\partial \Upphi_{\text{W}} }}{\partial z}} \right|_{\begin{subarray}{l} x = 0 \\ z = h \end{subarray} } = \frac{1}{4\pi }\int\limits_{{ - {\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{\Upgamma \left( \eta \right){\text{d}}\eta }}{{\left( {y - \eta } \right)^{2} }}} $$
(63)

Equation 63 is an integral with singularity of second order. It is easy to divergent when we use the finite integral concept. Thus, reducing the singularity order can benefit from computation time. Integration by parts is performed by Eq. 63

$$ \begin{aligned} w_{\text{W}} = & \frac{1}{4\pi }\int\limits_{{ - {\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}} {\Upgamma \left( \eta \right){\text{d}}\frac{1}{y - \eta }} \\ & = \left. {\frac{1}{4\pi }\frac{\Upgamma \left( \eta \right)}{y - \eta }} \right|_{{ - {\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}} - \frac{1}{4\pi }\int\limits_{{ - {\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{{\text{d}}\Upgamma \left( \eta \right)}}{y - \eta }} \\ \end{aligned} $$
(64)

The boundary condition that the vortices vanish at the tips should be imposed. Therefore, Eq. 64 becomes:

$$ w_{\text{W}} = - \frac{1}{4\pi }\int\limits_{{ - {\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{\sigma \mathord{\left/ {\vphantom {\sigma 2}} \right. \kern-\nulldelimiterspace} 2}}} {\frac{{{{{\text{d}}\Upgamma \left( \eta \right)} \mathord{\left/ {\vphantom {{{\text{d}}\Upgamma \left( \eta \right)} {{\text{d}}\eta }}} \right. \kern-\nulldelimiterspace} {{\text{d}}\eta }}}}{y - \eta }{\text{d}}\eta } $$
(65)

The formula Eq. 65 can also be found in [37]. We make the following substitutions, which are standard for solving the lifting line equation:

$$ y = - \frac{\sigma }{2}\cos \theta ,\;\eta = - \frac{\sigma }{2}\cos \theta^{\prime} $$
(66)

and

$$ \Upgamma \left( {\theta^{\prime}} \right) = \sigma U\sum\limits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}} $$
(67)

where the representations for \( \Upgamma \left( {\theta^{\prime}} \right) \) ensure that the vorticity vanishes at the end of the lifting line. Using the above coordinate change, we can calculate the derivative of Eq. (58) used in the integrals:

$$ {\text{d}}\eta = \frac{\sigma }{2}\sin \theta^{\prime}{\text{d}}\theta^{\prime} $$
(68)

Substituting the above substitutions, Eq. (65) becomes the integrals with respect to \( \theta^{\prime} \) with singularity of order two. After some calculations, Eq. (65) can be rewritten as

$$ w_{\text{W}} = \frac{1}{2\pi }\int\limits_{0}^{\pi } {\frac{{\sum\nolimits_{n = 1}^{\infty } {nA_{n} \cos n\theta^{\prime}} }}{{\cos \theta - \cos \theta^{\prime}}}{\text{d}}\theta^{\prime}} $$
(69)

Equation 69 is known as Glauert integral, which equals:

$$ w_{\text{W}} = \frac{1}{2}\sum\limits_{n = 1}^{\infty } {nA_{n} \frac{\sin n\theta }{\sin \theta }} $$
(70)

However, the velocity of downwash on the upper wing induced by the wake of the lower wing is not integrable. And there are two different circulation expressions:

$$ \Upgamma_{\text{l}} \left( {\theta^{\prime}} \right) = \sigma U\sum\limits_{n = 1}^{N} {A_{n} \sin n\theta^{\prime}} ,\;\Upgamma_{\text{u}} \left( {\theta^{\prime}} \right) = \sigma U\sum\limits_{n = 1}^{N} {B_{n} \sin n\theta^{\prime}} $$
(71)

Because of the symmetry characteristics of circulation, the coefficients of even terms in Eq. (71) are equal to zero. We suppose that there are N terms in each circulation expression. Thus, there are 2N unknown numbers. We can assign 2N values to θ, and then an equation system with 2N unknowns will be obtained. Thus, we can get the expressions of Γl and Γu.

About this article

Cite this article

Liang, H., Zhou, L., Zong, Z. et al. An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface. J Mar Sci Technol 18, 12–31 (2013). https://doi.org/10.1007/s00773-012-0187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-012-0187-9

Keywords

Navigation