Advertisement

Die klinische Relevanz von DAMP („damage-associated molecular pattern“) für den postoperativen Verlauf nach thorakoabdomineller Aortenchirurgie

Eine selektive Literaturrecherche
  • A. GombertEmail author
  • J. Grommes
  • M. J. Jacobs
Netzwerk Grundlagenforschung
  • 8 Downloads

Einleitung

Chirurgische Großeingriffe wie thorakoabdominelle Aorteneingriffe stellen massive Gewebsverletzungen dar und sind mit einer relevanten Sterblichkeit und Morbidität behaftet [1].

Der damit assoziierte Ischämiereperfusionsschaden, die Hypoxämie, Blutverluste und Massivtransfusionen können zudem einen sekundären Gewebeschaden auslösen. Durch diese Traumata werden eine Vielzahl von Mediatoren, sog. „damage-associated molecular pattern“ (DAMP), durch das verletzte Gewebe in die Blutbahn freigesetzt. DAMP werden durch das Immunsystem erkannt und können eine systemische Inflammationsreaktion („systemic inflammatory response syndrome“ [SIRS]) initiieren [2]. SIRS wiederum induziert systemische Veränderungen wie Hypo- oder Hyperthermie, Tachy- oder Bradykardie, Leukozytose oder Leukopenie. Die frühe und nicht regulierte Inflammationsreaktion wurde in der Literatur als „sterile Sepsis“ mit konsekutivem Organversagen beschrieben [3]. Die starke Anfälligkeit des Organismus für...

Clinical relevance of damage-associated molecular patterns (DAMP) for the postoperative course after thoracoabdominal aortic surgery

A selective literature search

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Gombert, J. Grommes und M.J. Jacobs geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Coselli JS et al (2016) Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg 151(5):1323–1337CrossRefGoogle Scholar
  2. 2.
    Bone RC et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 136(5 Suppl):e28–2009Google Scholar
  3. 3.
    Hoover L et al (2006) Systemic inflammatory response syndrome and nosocomial infection in trauma. J Trauma 61(2):310–316 (discussion 316–7)CrossRefGoogle Scholar
  4. 4.
    Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13(3):260–268CrossRefGoogle Scholar
  5. 5.
    Bochicchio GV et al (2002) Persistent systemic inflammatory response syndrome is predictive of nosocomial infection in trauma. J Trauma 53(2):245–250 (discussion 250–1)CrossRefGoogle Scholar
  6. 6.
    Jacobs MJ et al (2007) Surgical repair of thoracoabdominal aortic aneurysms. J Cardiovasc Surg (torino) 48(1):49–58Google Scholar
  7. 7.
    Vourc’h M, Roquilly A, Asehnoune K (2018) Trauma-induced damage-associated molecular patterns-mediated remote organ injury and Immunosuppression in the acutely ill patient. Front Immunol 9:1330CrossRefGoogle Scholar
  8. 8.
    Manson J, Thiemermann C, Brohi K (2012) Trauma alarmins as activators of damage-induced inflammation. Br J Surg 99(Suppl 1):12–20CrossRefGoogle Scholar
  9. 9.
    Ma KC et al (2018) The role of danger signals in the pathogenesis and perpetuation of critical illness. Am J Respir Crit Care Med 197(3):300–309CrossRefGoogle Scholar
  10. 10.
    Zhang Q et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107CrossRefGoogle Scholar
  11. 11.
    Simmons JD et al (2013) Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 258(4):591–596 (discussion 596–8)PubMedGoogle Scholar
  12. 12.
    Kariko K et al (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279(13):12542–12550CrossRefGoogle Scholar
  13. 13.
    He ZW et al (2013) HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-kappaB signaling pathways. Mediators Inflamm.  https://doi.org/10.1155/2013/596716 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Andrassy M et al (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117(25):3216–3226CrossRefGoogle Scholar
  15. 15.
    Tsung A et al (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201(7):1135–1143CrossRefGoogle Scholar
  16. 16.
    Yang R et al (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 12(4–6):105–114PubMedPubMedCentralGoogle Scholar
  17. 17.
    Cohen MJ et al (2009) Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care 13(6):R174CrossRefGoogle Scholar
  18. 18.
    Venereau E et al (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209(9):1519–1528CrossRefGoogle Scholar
  19. 19.
    Timmermans K et al (2016) Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med 42(4):551–561CrossRefGoogle Scholar
  20. 20.
    Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27(6):367–377CrossRefGoogle Scholar
  21. 21.
    Pittet JF et al (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52(4):611–617 (discussion 617)PubMedGoogle Scholar
  22. 22.
    Foell D et al (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81(1):28–37CrossRefGoogle Scholar
  23. 23.
    Roth J et al (1992) Complex pattern of the myelo-monocytic differentiation antigens MRP8 and MRP14 during chronic airway inflammation. Immunobiology 186(3–4):304–314CrossRefGoogle Scholar
  24. 24.
    Dar MI et al (2001) Single aortic cross-clamp technique reduces S‑100 release after coronary artery surgery. Ann Thorac Surg 71(3):794–796CrossRefGoogle Scholar
  25. 25.
    Vos PE et al (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Baillieres Clin Neurol 75(20):1786–1793Google Scholar
  26. 26.
    Schober A, Bernhagen J, Weber C (2008) Chemokine-like functions of MIF in atherosclerosis. J Mol Med 86(7):761–770CrossRefGoogle Scholar
  27. 27.
    Asare Y, Schmitt M, Bernhagen J (2013) The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 109(3):391–398CrossRefGoogle Scholar
  28. 28.
    Payen D et al (2012) A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. PLoS ONE 7(6):e35838CrossRefGoogle Scholar
  29. 29.
    Stefaniak J et al (2015) Macrophage migration inhibitory factor as a potential predictor for requirement of renal replacement therapy after orthotopic liver transplantation. Liver Transpl 21(5):662–669CrossRefGoogle Scholar
  30. 30.
    Al-Abed Y et al (2005) ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem 280(44):36541–36544CrossRefGoogle Scholar
  31. 31.
    Kleemann R et al (2000) Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408(6809):211–216CrossRefGoogle Scholar
  32. 32.
    Gombert A et al (2017) Macrophage migration inhibitory factor predicts outcome in complex aortic surgery. Int J Mol Sci 18(11):2374CrossRefGoogle Scholar
  33. 33.
    Li J et al (2018) Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol Ther 26(10):2523–2532CrossRefGoogle Scholar
  34. 34.
    Simon TP et al (2017) Plasma adrenomedullin in critically ill patients with sepsis after major surgery: a pilot study. J Crit Care 38:68–72CrossRefGoogle Scholar
  35. 35.
    Tolppanen H et al (2017) Adrenomedullin: a marker of impaired hemodynamics, organ dysfunction, and poor prognosis in cardiogenic shock. Ann Intensive Care 7(1):6CrossRefGoogle Scholar
  36. 36.
    Hinrichs S et al (2018) P283The precursor Pro-Adrenomedullin is an active protein: it supports cardiomyocyte survival and regulates cardiac inflammation related to myocardial infarction. Cardiovasc Res 114(suppl_1):S73–S73CrossRefGoogle Scholar
  37. 37.
    Kawai C et al (2016) Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol 186(4):829–843CrossRefGoogle Scholar
  38. 38.
    Dear JW et al (2011) Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J Immunol 187(6):3347–3352CrossRefGoogle Scholar
  39. 39.
    Fiane AE et al (2003) Mechanism of complement activation and its role in the inflammatory response after thoracoabdominal aortic aneurysm repair. Circulation 108(7):849–856CrossRefGoogle Scholar
  40. 40.
    Welborn MB et al (2000) The relationship between visceral ischemia, proinflammatory cytokines, and organ injury in patients undergoing thoracoabdominal aortic aneurysm repair. Crit Care Med 28(9):3191–3197CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.European Vascular Center Aachen-Maastricht, Department of Vascular SugeryUniversity Hospital RWTH AachenAachenDeutschland

Personalised recommendations