Advertisement

Gefässchirurgie

, Volume 23, Issue 8, pp 574–579 | Cite as

Imaging-Verfahren – Möglichkeiten zur Strahlenreduktion im Operationssaal

  • M. Kaschwich
  • F. Matysiak
  • M. Horn
  • M. Kleemann
Leitthema
  • 40 Downloads

Zusammenfassung

Die Etablierung endovaskulärer Techniken hat die Welt der konventionellen offenen Gefäßchirurgie grundlegend verändert und eine neue Ära der Behandlung gefäßchirurgischer Patienten eingeleitet. Dank dieser Techniken können Patienten heutzutage minimal-invasiv ohne großes Zugangstrauma behandelt werden. Ein bis dato ungelöstes Problem der neuen Interventionsmethoden stellt allerdings nach wie vor die Notwendigkeit der Anwendung von Röntgenstrahlen dar. In diesem Zusammenhang kommt es, bedingt durch die immer komplexeren Prozeduren, die eine lange Durchleuchtungszeit benötigen, zu einer zum Teil erheblichen Strahlenbelastung für den Patienten und das Operationsteam, mit der Gefahr gesundheitlicher Folgeschäden. Die Befolgung von Strahlenschutzmaßnahmen hat daher oberste Priorität. Entsprechende Geräteeinstellungen können die Strahlenexposition zusätzlich deutlich vermindern. Des Weiteren kann eine Verbesserung der intraoperativen Navigation durch Image Fusion, der vermehrte Einsatz des Ultraschalls sowie die Durchführung von Simulatortrainings für unerfahrene Chirurgen, die Strahlenbelastung signifikant reduzieren. Allerdings sind diese Maßnahmen bis dato nur als additiv im Rahmen einer konventionellen Navigation unter Röntgendurchleuchtung anzusehen. Die Etablierung neuer Navigationsmethoden ohne die Anwendung von Röntgenstrahlung ist daher von hoher klinischer Relevanz. Erste Ansätze finden sich in der MR-gestützten endovaskulären Intervention und der Anwendung von Augmented Reality zur intraprozeduralen Navigation.

Schlüsselwörter

Endovaskuläre Chirurgie Strahlenschutz Endovaskuläre Navigation Intraoperative Bildgebung Augmented Reality 

Imaging procedures—Possibilities for reduction of radiation in the operating room

Abstract

The establishment of endovascular techniques has tremendously changed the world of conventional open vascular surgery and led to a new era in the treatment of vascular surgery patients. Because of these new techniques, patients can nowadays undergo minimally invasive treatment; however, the necessity to use x‑rays within the scope of endovascular surgery is still an unsolved problem. In this context the rising complexity of endovascular procedures leads to an extended duration of interventional times and as a consequence to a significant rise in the radiation dose for the patient and the surgeon, with a danger to health due to radiation injuries. Therefore, the adherence to measures for radiation protection is of utmost importance. Relevant device settings can additionally reduce the radiation exposure. Furthermore, an improvement of intraprocedural visualization by image fusion, the use of ultrasound and simulator training for inexperienced endovascular surgeons can significantly reduce radiation exposure; however, all these measures are only additive in the context of conventional interventions under radiation exposure. The establishment of new radiation-free navigation systems is therefore of major clinical interest. Initial approaches are magnetic resonance (MR)-guided endovascular interventions and the use of augmented reality for intraprocedural navigation.

Keywords

Endovascular surgery Radiation protection Endovascular navigation Intraoperative visualization Augmented reality 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Kaschwich, F. Matysiak, M. Horn und M. Kleemann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Lawall H, Huppert G, Rümenapf G (2015) S3-Leitlinie zur Diagnostik, Therapie und Nachsorge der Peripheren Arteriellen Verschlusskrankheit. Dtsch. Gesellschaft für Angiol. Gesellschaft für GefäßmedizinGoogle Scholar
  2. 2.
    Hurks R, Ultee KHJ, Buck DB et al (2015) The impact of endovascular repair on specialties performing abdominal aortic aneurysm repair. J Vasc Surg 62:562–568.  https://doi.org/10.1016/j.cogdev.2010.08.003.Personal CrossRefGoogle Scholar
  3. 3.
    Veith FJ (2016) A look at the future of vascular surgery. J Vasc Surg 64:885–890.  https://doi.org/10.1016/j.jvs.2016.07.096 CrossRefGoogle Scholar
  4. 4.
    Thakor AS, Winterbottom A, Mercuri M et al (2011) The radiation burden from increasingly complex endovascular aortic aneurysm repair. Insights Imaging 2:699–704.  https://doi.org/10.1007/s13244-011-0120-5 CrossRefGoogle Scholar
  5. 5.
    Machado R, Ferreira VMD, Loureiro L et al (2016) Radiation exposure in endovascular infra-renal aortic aneurysm repair and factors that influence it. Braz J Cardiovasc Surg 31:415–421.  https://doi.org/10.5935/1678-9741.20160084 CrossRefGoogle Scholar
  6. 6.
    Bundesamt für Strahlenschutz (2018) Wie wirkt Strahlung? http://www.bfs.de/DE/themen/ion/wirkung/einfuehrung/einfuehrung.html Google Scholar
  7. 7.
    Kirkwood ML, Arbique GM, Guild JB et al (2014) Radiation-induced skin injury after complex endovascular procedures. J Vasc Surg 60:742–748.  https://doi.org/10.1016/j.jvs.2014.03.236 CrossRefGoogle Scholar
  8. 8.
    Roguin A, Goldstein J, Bar O, Goldstein JA (2013) Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol 111:1368–1372.  https://doi.org/10.1016/j.amjcard.2012.12.060 CrossRefGoogle Scholar
  9. 9.
    Diethrich E, Machan L (2015) Working with radiation is like keeping a pet tiger in your living room. Vasc News 67:1–2Google Scholar
  10. 10.
    Sailer AM, Paulis L, Vergoossen L et al (2017) Real-time patient and staff radiation dose monitoring in IR practice. Cardiovasc Intervent Radiol 40:421–429.  https://doi.org/10.1007/s00270-016-1526-8 CrossRefGoogle Scholar
  11. 11.
    Sanchez R, Fernandez EVJM, Gallego JJ (2010) Staff radiation doses in a real-time display inside the angiography room. Cardiovasc Intervent Radiol 33:1210–1214.  https://doi.org/10.1007/s00270-010-9945-4 CrossRefGoogle Scholar
  12. 12.
    Bethesda M (1990) Implementation of the principle of as low as reasonably achievable (ALARA) for medical and dental personnel: recommendations of the National Council on Radiation Protection and Measurements. National Council on Radiation Protection and Measurements report no. 107Google Scholar
  13. 13.
    Kirkwood ML, Arbique GM, Guild JB et al (2018) Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps. J Vasc Surg.  https://doi.org/10.1016/j.jvs.2017.12.054 CrossRefGoogle Scholar
  14. 14.
    Stahlberg E, Planert M, Panagiotopoulos N et al (2017) Pre-operative simulation of the appropriate C‑arm position using computed tomography post-processing software reduces radiation and contrast medium exposure during EVAR procedures. Eur J Vasc Endovasc Surg 53:269–274.  https://doi.org/10.1016/j.ejvs.2016.10.016 CrossRefGoogle Scholar
  15. 15.
    Hertault A, Maurel B, Sobocinski J et al (2014) Impact of hybrid rooms with image fusion on radiation exposure during endovascular aortic repair. Eur J Vasc Endovasc Surg 48:382–390.  https://doi.org/10.1016/j.ejvs.2014.05.026 CrossRefGoogle Scholar
  16. 16.
    Stangenberg L, Shuja F, Carelsen B et al (2015) A novel tool for three-dimensional roadmapping reduces radiation exposure and contrast agent dose in complex endovascular interventions. J Vasc Surg 62:448–455.  https://doi.org/10.1016/j.jvs.2015.03.041 CrossRefGoogle Scholar
  17. 17.
    Torres IO, De Luccia N (2017) A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. Eur J Vasc Endovasc Surg 54:247–253.  https://doi.org/10.1016/j.ejvs.2017.05.011 CrossRefGoogle Scholar
  18. 18.
    De Ponti R, Marazzi R, Doni LA et al (2012) Simulator training reduces radiation exposure and improves trainees’ performance in placing electrophysiologic catheters during patient-based procedures. Heart Rhythm 9:1280–1285.  https://doi.org/10.1016/j.hrthm.2012.04.015 CrossRefGoogle Scholar
  19. 19.
    Ascher E, Marks NA, Hingorani AP et al (2006) Duplex-guided endovascular treatment for occlusive and stenotic lesions of the femoral-popliteal arterial segment: a comparative study in the first 253 cases. J Vasc Surg 44:1230–1238.  https://doi.org/10.1016/j.jvs.2006.08.025 CrossRefGoogle Scholar
  20. 20.
    Ascher E, Gopal K, Marks N et al (2010) Duplex-guided endovascular repair of popliteal artery aneurysms (PAAs): a new approach to avert the use of contrast material and radiation exposure. Eur J Vasc Endovasc Surg 39:769–773.  https://doi.org/10.1016/j.ejvs.2010.02.010 CrossRefGoogle Scholar
  21. 21.
    Hitchner E, Zayed M, Varu V et al (2015) A prospective evaluation of using IVUS during percutaneous superficial femoral artery interventions. Ann Vasc Surg 29:28–33.  https://doi.org/10.1016/j.avsg.2014.07.026 CrossRefGoogle Scholar
  22. 22.
    Secco GG, Grattoni C, Parisi R et al (2015) Optical coherence tomography guidance during peripheral vascular intervention. Cardiovasc Intervent Radiol 38:768–772.  https://doi.org/10.1007/s00270-014-0868-3 CrossRefGoogle Scholar
  23. 23.
    Settecase F, Martin A, Lillaney P et al (2015) MR-guided passive catheter tracking for endovascular therapy. Magn Reson Imaging Clin N Am 23:591–605.  https://doi.org/10.1016/j.mric.2015.05.003.MR-guided CrossRefGoogle Scholar
  24. 24.
    Massmann A, Buecker A, Schneider G (2017) Glass-fiber-based MR-safe guidewire for MR imaging—guided endovascular interventions: in vitro and preclinical in vivo feasibility study. Radiology 284:541–551CrossRefGoogle Scholar
  25. 25.
    Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217.  https://doi.org/10.1038/nature03808 CrossRefGoogle Scholar
  26. 26.
    Panagiotopoulos N, Duschka RL, Ahlborg M et al (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114CrossRefGoogle Scholar
  27. 27.
    Salamon J, Hofmann M, Jung C et al (2016) Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PLoS ONE 11:1–14.  https://doi.org/10.1371/journal.pone.0156899 CrossRefGoogle Scholar
  28. 28.
    Chen RE, Kim EJ, Akinduro OO et al (2018) Augmented reality for the surgeon : systematic review. Int J Med Robot.  https://doi.org/10.1002/rcs.1914 CrossRefGoogle Scholar
  29. 29.
    Gao M, Chen Y, Liu Q et al (2015) Three-dimensional path planning and guidance of leg vascular based on improved ant colony algorithm in augmented reality. J Med Syst.  https://doi.org/10.1007/s10916-015-0315-2 CrossRefGoogle Scholar
  30. 30.
    Horn M, Goltz JP, Stahlberg E et al (2017) Endovascular interventions proceeded under contrast agent and radiation sparing using navigation and imaging techniques for holographic visualisation. European Symposium on Vascular Biomaterials, StrasbourgGoogle Scholar
  31. 31.
    Horn M, Nolde J, Goltz JP et al (2015) Ein Prototyp für die navigierte Implantation von Aortenstentprothesen zur Reduzierung der Kontrastmittel- und Strahlenbelastung: Das Nav-CARS-EVAR-Konzept (Navigated-Contrast-Agent and Radiation Sparing Endovascular Aortic Repair). Zentralbl Chir 140:493–499.  https://doi.org/10.1055/s-0035-1546261 CrossRefGoogle Scholar
  32. 32.
    Schueler BA (2010) Operator shielding: how and why. Tech Vasc Interv Radiol 13:167–171.  https://doi.org/10.1053/j.tvir.2010.03.005 CrossRefGoogle Scholar
  33. 33.
    Fetterly KA, Magnuson DJ, Tannahill GM et al (2011) Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv 4:1133–1139.  https://doi.org/10.1016/j.jcin.2011.05.027 CrossRefGoogle Scholar
  34. 34.
    Hertault A, Maurel B, Midulla M et al (2015) Editor’s choice: minimizing radiation exposure during endovascular procedures: basic knowledge, literature review and reporting standards. Eur J Vasc Endovasc Surg 50:21–36.  https://doi.org/10.1016/j.ejvs.2015.01.014 CrossRefGoogle Scholar
  35. 35.
    Lederman HM, Khademian ZP, Felice M, Hurh PJ (2002) Dose reduction fluoroscopy in pediatrics. Pediatr Radiol 32:844–848.  https://doi.org/10.1007/s00247-002-0696-5 CrossRefGoogle Scholar
  36. 36.
    Haqqani OP, Agarwal PK, Halin NM, Iafrati MD (2012) Minimizing radiation exposure to the vascular surgeon. J Vasc Surg 55:799–805.  https://doi.org/10.1016/j.jvs.2011.08.055 CrossRefGoogle Scholar
  37. 37.
    Bartal G, Vano E, Paulo G, Miller DL (2014) Management of patient and staff radiation dose in Interventional radiology: current concepts. Cardiovasc Intervent Radiol 37:289–298.  https://doi.org/10.1007/s00270-013-0685-0 CrossRefGoogle Scholar
  38. 38.
    Peach G, Sinha S, Black SA et al (2012) Operator-controlled imaging significantly reduces radiation exposure during EVAR. Eur J Vasc Endovasc Surg 44:395–398.  https://doi.org/10.1016/j.ejvs.2012.08.001 CrossRefGoogle Scholar
  39. 39.
    Lawrence PF, Editor S, Bordoli SJ et al (2014) Radiation safety education in vascular surgery training. J Vasc Surg 59:860–864.  https://doi.org/10.1016/j.jvs.2013.10.085 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Bereich Gefäß- und endovaskuläre Chirurgie, Klinik für ChirurgieUKSH, Campus LübeckLübeckDeutschland

Personalised recommendations