Gefässchirurgie

, Volume 14, Issue 1, pp 9–15 | Cite as

Mausmodelle zur Erforschung der Intimahyperplasie

  • A. Larena-Avellaneda
  • M. Winkler
  • T. Shimizu
  • M.A. Reidy
  • G. Daum
Leitthema

Zusammenfassung

Die Intimahyperplasie (IH) ist eines der Hauptprobleme nach Eingriffen am Gefäßsystem. Obwohl man zahlreiche pathophysiologische Vorgänge mit der IH in Verbindung bringen kann, sind die genauen molekularen Mechanismen weitestgehend unbekannt. Zur detaillierten Erforschung dieser Prozesse werden unter anderem Knock-out-Mausmodelle mit artifizieller arterieller Läsion verwendet, mit denen eine gezielte Analyse individueller Gene möglich ist. Es konnte nachgewiesen werden, dass das Ausmaß der IH zwischen verschiedenen Inzuchtstämmen variiert. Somit können heute Genloci identifiziert werden, die mit der IH korrelieren.

Als Zielgefäß für die arterielle Verletzung eignet sich in der Maus besonders die A. carotis. Dabei gibt es verschiedene Wege, die IH zu erzeugen: Endothelfreilegung durch Nylonschlinge oder Führungsdraht, Ligatur der A. carotis communis, Angioplastie mittels Ballonkatheter und Veneninterponate.

Im vorliegenden Artikel werden zwei wichtige Forschungsgebiete näher erläutert. Zunächst wird auf die Bedeutung des bioaktiven Lipids Sphingosin-1-Phosphat (S1P) eingegangen. Den Studienergebnissen nach ist S1P für die Differenzierung der glatten Muskelzellen (GM) der Media über eine Aktivierung des Typ-2-Rezeptors verantwortlich. Die auf diese Weise induzierte Expression von GM-Differenzierungsgenen scheint die Proliferation der GM zu hemmen, und somit die IH zu limitieren. Als zweites Forschungsgebiet wird die Rolle der Stammzellen im Rahmen der IH diskutiert. So wurden in den intimalen Läsionen der Mausarterie endotheliale Progenitorzellen (EPC) und aus dem Knochenmark stammende mesenchymale Stammzellen gefunden. Die Funktion dieser Zellen ist jedoch noch unklar.

Ein auf den ersten Blick irritierender Aspekt in der IH-Forschung ist die Beobachtung, dass nicht nur die Art der Verletzung, sondern auch die Topografie des Gefäßes das Ausmaß der IH beeinflusst. Zusammenfassend definieren also verschiedene Parameter die Reaktion des Gefäßes auf die Verletzung. Die Mechanismen, die zur Ausbildung der IH führen, scheinen demnach keineswegs so einheitlich zu sein, wie bisher angenommen.

Schlüsselworter

Intimahyperplasie Restenose Mausmodell Sphingosin-1-Phosphat Stammzellen 

Research in intimal hyperplasia: mouse models

Abstract

Intimal hyperplasia (IH) is one of the major problems after vascular interventions. Despite the identification of multiple processes thought to be involved, the molecular mechanisms controlling IH are still not understood. Mouse models of arterial injury are now widely used to study IH because they allow the investigation of individual genes in knock-out animals. Moreover, it has been demonstrated that the extent of IH varies among inbred strains; thus, mouse models can be used to identify genetic loci that correlate with IH.

A suitable vessel for injury experiments in mice is the carotid artery. There are different ways to induce IH in the mouse carotid: denudation of the endothelium with a catheter (nylon loop or angioplasty guide wire), complete ligation of the common carotid, dilatation by a balloon catheter, or venous grafts.

In this paper, current studies in two areas of IH research are presented. First, a novel role for the bioactive lipid sphingosine-1-phosphate (S1P) is described. The hypothesis is that S1P promotes differentiation of smooth muscle cells (SMCs) by activating the type-2 receptor for S1P. Increased expression of SMC differentiation genes is thought to restrict the proliferative potential of these cells, thereby limiting IH. Second, a role for stem cells in IH is discussed. Although functional data are largely lacking, endothelial progenitor cells as well as mesenchymal stem cells have been found in murine intimal lesions.

A potentially confounding aspect in IH research are observations indicating that the extent of IH after arterial injury depends not only on the nature of the injury but also on the vascular bed.

In conclusion, multiple parameters define the reponse to arterial injury; therefore, the mechanisms underlying IH may be much less uniform than commonly assumed.

Keywords

Intimal hyperplasia Vascular graft restenosis Mouse model Sphingosine-1-phosphate Stem cells 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  2. 2.
    Breslow JL (1994) Lipoprotein metabolism and atherosclerosis susceptibility in transgenic mice. Curr Opin Lipidol 5:175–184PubMedCrossRefGoogle Scholar
  3. 3.
    Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82PubMedCrossRefGoogle Scholar
  4. 4.
    Chabot B, Stephenson DA, Chapman VM et al (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–89PubMedCrossRefGoogle Scholar
  5. 5.
    Clowes AW, Gown AM, Hanson SR, Reidy MA (1985) Mechanisms of arterial graft failure. 1. Role of cellular proliferation in early healing of PTFE prostheses. Am J Pathol 118:43–54PubMedGoogle Scholar
  6. 6.
    Clowes AW, Breslow JL, Karnovsky MJ (1977) Regression of myointimal thickening following carotid endothelial injury and development of aortic foam cell lesions in long term hypercholesterolemic rats. Lab Invest 36:73–81PubMedGoogle Scholar
  7. 7.
    Diao Y, Xue J, Segal MS (2005) A novel mouse model of autologous venous graft intimal hyperplasia. J Surg Res 126:106–113PubMedCrossRefGoogle Scholar
  8. 8.
    Gardell SE, Dubin AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12:65–75PubMedCrossRefGoogle Scholar
  9. 9.
    Gimbrone MA Jr, Resnick N, Nagel T et al (1997) Hemodynamics, endothelial gene expression and atherogenesis. Ann NY Acad Sci 811:1–10PubMedCrossRefGoogle Scholar
  10. 10.
    Goldman M, Norcott HC, Hawker RJ et al (1982) Platelet accumulation on mature Dacron grafts in man. Br J Surg 69(Suppl):S38–S40PubMedCrossRefGoogle Scholar
  11. 11.
    Han DK, Haudenschild CC, Hong MK et al (1995) Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 147:267–277PubMedGoogle Scholar
  12. 12.
    Harmon KJ, Couper LL, Lindner V (2000) Strain-dependent vascular remodeling phenotypes in inbred mice. Am J Pathol 156:1741–1748PubMedGoogle Scholar
  13. 13.
    Hui DY (2008) Intimal hyperplasia in murine models. Curr Drug Targets 9:251–260PubMedCrossRefGoogle Scholar
  14. 14.
    Inoue S, Nakazawa T, Cho A et al (2007) Regulation of arterial lesions in mice depends on differential smooth muscle cell migration: a role for sphingosine-1-phosphate receptors. J Vasc Surg 46:756–763PubMedCrossRefGoogle Scholar
  15. 15.
    Iwata H, Sata M (2007) Potential contribution of bone marrow-derived precursors to vascular repair and lesion formation: lessons from animal models of vascular diseases. Front Biosci 12:4157–4167PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar A, Lindner V (1997) Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 17:2238–2244PubMedGoogle Scholar
  17. 17.
    Larena-Avellaneda A, Franke S (2004) Die Intimahyperplasie – Bedeutung für den Gefäßchirurgen und therapeutische Möglichkeiten. Gefässchirurgie 9:89–95CrossRefGoogle Scholar
  18. 18.
    Larena-Avellaneda A, Dittmann G, Siegel R et al (2008) Lokale Medikamentenfreisetzung am und im Gefäß. „Drug releasing devices“. Gefässchirurgie 13:107–114CrossRefGoogle Scholar
  19. 19.
    Lindner V, Fingerle J, Reidy MA (1993) Mouse model of arterial injury. Circ Res 73:792–796PubMedGoogle Scholar
  20. 20.
    Liu Y, Sinha S, McDonald OG et al (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727PubMedCrossRefGoogle Scholar
  21. 21.
    Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258PubMedCrossRefGoogle Scholar
  22. 22.
    Min SK, Kenagy RD, Jeanette JP, Clowes AW (2008) Effects of external wrapping and increased blood flow on atrophy of the baboon iliac artery. J Vasc Surg 47:1039–1047PubMedCrossRefGoogle Scholar
  23. 23.
    Nikkari ST, Clowes AW (1994) Restenosis after vascular reconstruction. Ann Med 26:95–100PubMedCrossRefGoogle Scholar
  24. 24.
    Okamoto H, Takuwa N, Yokomizo T et al (2000) Inhibitory regulation of Rac activation, membrane ruffling and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261PubMedCrossRefGoogle Scholar
  25. 25.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRefGoogle Scholar
  26. 26.
    Rowe CS, Carpenter TK, How TV, Harris PL (1999) Local haemodynamics of arterial bypass graft anastomoses. Proc Inst Mech Eng [H] 213:401–409Google Scholar
  27. 27.
    Ryu Y, Takuwa N, Sugimoto N et al (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90:325–332PubMedCrossRefGoogle Scholar
  28. 28.
    Sata M, Saiura A, Kunisato A et al (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409PubMedCrossRefGoogle Scholar
  29. 29.
    Shimizu T, Nakazawa T, Cho A et al (2007) Sphingosine 1-phosphate receptor 2 negatively regulates neointimal formation in mouse arteries. Circ Res 101:995–1000PubMedCrossRefGoogle Scholar
  30. 30.
    Sommerville LJ, Kelemen SE, Autieri MV (2008) Increased smooth muscle cell activation and neointima formation in response to injury in AIF-1 transgenic mice. Arterioscler Thromb Vasc Biol 28:47–53PubMedCrossRefGoogle Scholar
  31. 31.
    Tanaka K, Sata M, Hirata Y, Nagai R (2003) Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res 93:783–790PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai S, Butler J, Rafii S et al (2008) The role of progenitor cells in the development of intimal hyperplasia. J Vasc SurgGoogle Scholar
  33. 33.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353PubMedCrossRefGoogle Scholar
  34. 34.
    Wang CH, Verma S, Hsieh IC et al (2007) Stem cell factor attenuates vascular smooth muscle apoptosis and increases intimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 27:540–547PubMedCrossRefGoogle Scholar
  35. 35.
    Wang CH, Anderson N, Li SH et al (2006) Stem cell factor deficiency is vasculoprotective: unraveling a new therapeutic potential of imatinib mesylate. Circ Res 99:617–625PubMedCrossRefGoogle Scholar
  36. 36.
    Wang CH, Ciliberti N, Li SH et al (2004) Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy. Circulation 109:1392–1400PubMedCrossRefGoogle Scholar
  37. 37.
    Wang DZ, Olson EN (2004) Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev 14:558–566PubMedCrossRefGoogle Scholar
  38. 38.
    Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRefGoogle Scholar
  39. 39.
    Werner N, Junk S, Laufs U et al (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24PubMedCrossRefGoogle Scholar
  40. 40.
    Werner N, Priller J, Laufs U et al (2002) Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22:1567–1572PubMedCrossRefGoogle Scholar
  41. 41.
    Wu MH, Shi Q, Sauvage LR et al (1993) The direct effect of graft compliance mismatch per se on development of host arterial intimal hyperplasia at the anastomotic interface. Ann Vasc Surg 7:156–168PubMedCrossRefGoogle Scholar
  42. 42.
    Xu CB, Hansen-Schwartz J, Edvinsson L (2004) Sphingosine signaling and atherogenesis. Acta Pharmacol Sin 25:849–854PubMedGoogle Scholar
  43. 43.
    Xu Q (2004) Mouse models of arteriosclerosis: from arterial injuries to vascular grafts. Am J Pathol 165:1–10PubMedGoogle Scholar
  44. 44.
    Zacharias RK, Kirkman TR, Clowes AW (1987) Mechanisms of healing in synthetic grafts. J Vasc Surg 6:429–436PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang H, Sunnarborg SW, McNaughton KK et al (2008) Heparin-binding epidermal growth factor-like growth factor signaling in flow-induced arterial remodeling. Circ Res 102:1275–1285PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • A. Larena-Avellaneda
    • 1
  • M. Winkler
    • 1
  • T. Shimizu
    • 2
  • M.A. Reidy
    • 2
  • G. Daum
    • 3
  1. 1.Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I)Universitätsklinik WürzburgWürzburgDeutschland
  2. 2.Department of PathologyUniversity of WashingtonWashingtonUSA
  3. 3.Department of SurgeryUniversity of WashingtonWashingtonUSA

Personalised recommendations