Advertisement

Measurement of organochlorine pesticides in drinking water: laboratory technical proficiency testing in Mexico

  • J. B. Leyva-MoralesEmail author
  • P. J. Bastidas-Bastidas
  • R. Muñiz-Valencia
  • S. G. Ceballos Magaña
  • G. Ponce-Vélez
  • D. Aguilera-Márquez
  • P. Grajeda-Cota
  • M. S. Navidad-Murrieta
  • M. E. Flores-Munguía
  • J. A. Ramírez-Castillo
  • C. A. Romero-Bañuelos
  • R. Ruíz-Ramos
  • G. Aguilar-Zarate
  • G. Huerta-Beristain
Practitioner's Report
  • 66 Downloads

Abstract

An interlaboratory comparison exercise was performed to assess the technical proficiency of laboratories in measuring the organochlorine pesticides in drinking water. The homogeneity and stability of the samples to be used in the test were evaluated, the assigned value and the standard deviation were determined according to ISO Guide 35 and ISO standard 17043, and the results showed that the samples were homogeneous and stable for the study period. The test samples (previously verified, as pesticide-free) and the fortifying solution were distributed to nine laboratories in Mexico and analyzed using their own established analytical methods. The pesticides in the fortifying solution were aldrin, β-endosulfan, heptachlor, lindane (γ-HCH), and p,p′-DDE. The assigned values and reference standard deviations were compared with those obtained by each laboratory to determine the z-score for each pesticide and laboratory, and the results are shown graphically for each pesticide. The acceptable z-scores obtained by the participating laboratories were 20 %, 20 %, 20 %, 40 %, and 16.7 % for aldrin, β-endosulfan, heptachlor, lindane, and p,p′-DDE, respectively. This study also provides a summary of the sample preparation and chromatographic techniques used by the participating laboratories, which highlights the technical problems revealed by the interlaboratory exercise.

Keywords

Quality control Assigned value z-score Intercomparison Pesticides Drinking water 

Notes

Acknowledgements

Funding was provided by Red de Toxicologia de Plaguicidas CONACYT (Project Number 294303).

Supplementary material

769_2019_1403_MOESM1_ESM.docx (134 kb)
Supplementary material 1 (DOCX 129 kb)

References

  1. 1.
    ISO/IEC 17025 (2017) General requirements for the competence of test and calibration laboratories. International Organization for Standardization (ISO), GenevaGoogle Scholar
  2. 2.
    Araujo P, Frøyland L (2006) Hierarchical classification designs for the estimation of different sources of variability in proficiency testing experiments. Anal Chim Acta 555:348–353CrossRefGoogle Scholar
  3. 3.
    ISO/IEC 17043 (2010) Conformity assessment—general requirements for proficiency testing. International Organization for Standardization (ISO), GenevaGoogle Scholar
  4. 4.
    Poulsen ME, Christensen HB, Herrmann SS (2009) Proficiency test on incurred and spiked pesticide residues in cereals. Accred Qual Assur 14:477–485CrossRefGoogle Scholar
  5. 5.
    Violante FGM, Bastos LHP, Cardoso MHWM, Rodrigues JM, Gouvêa AV, Borges CN, da Santos PRF, da Santos DS, de Góes HCA, Souza V, de São José A, Bandeira RDCC, Cunha V, Nóbrega A (2009) Proficiency testing for the determination of pesticides in mango pulp: a view of the employed chromatographic techniques and the evaluation of laboratories’ performance. J Chromatogr Sci 47:833–839CrossRefPubMedGoogle Scholar
  6. 6.
    Kim B, Ahn S, Mitani Y (2011) Interlaboratory comparison for the determination of pesticide residues in Chinese cabbage. Accred Qual Assur 16:499–505CrossRefGoogle Scholar
  7. 7.
    Otake T, Yarita T, Aoyagi Y, Numata M, Takatsu A (2014) Evaluation of the performance of 57 Japanese participating laboratories by two types of z-scores in proficiency test for the quantification of pesticide residues in brown rice. Anal Bioanal Chem 406:7337–7344CrossRefPubMedGoogle Scholar
  8. 8.
    Otake T, Yarita T, Sakamoto T, Numata M, Takatsu A (2016) Proficiency testing for quantification of pesticide residues in treated brown rice samples: comparison of performance of Japanese official multiresidue, modified QuEChERS, and QuEChERS methods. J AOAC Int 99:821–829CrossRefGoogle Scholar
  9. 9.
    Generali T, Stefanelli P, Girolimetti S, Barbini DA (2015) Proficiency tests on olive oil organized by the Italian National Reference Laboratory for pesticides: long-term performance of laboratories. Accred Qual Assur 20:247–253CrossRefGoogle Scholar
  10. 10.
    Yarita T, Otake T, Aoyagi Y, Numata M, Takatsu A (2016) Difference between consensus value of participants’ results and isotope-dilution mass spectrometric results in proficiency testing for pesticide residues in husked wheat. Anal Sci 32:557–580CrossRefPubMedGoogle Scholar
  11. 11.
    630-Q023-0201-EA (2013) Ensayo de aptitud técnica: plaguicidas en col liofilizada. Centro Nacional de Metrología (CENAM), QuerétaroGoogle Scholar
  12. 12.
    CNM-EA-630-001-2016 (2016) Ensayo de aptitud técnica: plaguicidas en aguacate liofilizado. Centro Nacional de Metrología (CENAM), QuerétaroGoogle Scholar
  13. 13.
    CNM-EA-630-008/2017 (2017) Ensayo de aptitud técnica: plaguicidas en cereza de café. Centro Nacional de Metrología (CENAM), QuerétaroGoogle Scholar
  14. 14.
    EPA 822-F-18-001 (2018) Edition of the drinking water standards and health advisories. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  15. 15.
    EPA Method 508 (1995) Determination of chlorinated pesticides in water by gas chromatography with an electron capture detector. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  16. 16.
    ISO Guide 35 (2017) Reference materials—guidance for characterization and assessment of homogeneity and stability. International Organization for Standardization (ISO), GenevaGoogle Scholar
  17. 17.
    Schmid WA, Lazos-Martínez RJ (2004) Guía para estimar la incertidumbre de la medición. Centro Nacional de Metrología (CENAM), QuerétaroGoogle Scholar
  18. 18.
    Ramos L (2012) Critical overview of selected contemporary sample preparation techniques. J Chromatogr A 1221:84–98CrossRefPubMedGoogle Scholar
  19. 19.
    Puri P (2014) Current trends in extraction methodologies for pesticide residues in food matrices. Int J Agric Environ Biotechnol 7:331–342CrossRefGoogle Scholar
  20. 20.
    Nollet LML, Rathore HS (2016) Handbook of pesticides: methods of pesticide residues analysis. Taylor and Francis, New YorkCrossRefGoogle Scholar
  21. 21.
    Baudino OM, Suero EA, Augusto M, Gimenez ME, Flores N (2003) Monitoring organochlorine pesticides in surface and ground water in San Juan Argentina. J Chil Chem Soc 48:7–12CrossRefGoogle Scholar
  22. 22.
    Sibali LL, Okwonkwo JO, McCrindle RI (2008) Determination of selected organochlorine pesticide (OCP) compounds from the Jukskei River catchment area in Gauteng, South Africa. Water SA 34:611–621CrossRefGoogle Scholar
  23. 23.
    Leyva-Morales JB, Valdez-Torres JB, de Bastidas-Bastidas PJ, Angulo-Escalante MA, Sarmiento-Sánchez JI, Barraza-Lobo AL, Olmeda-Rubio C, Chaidez-Quiroz C (2017) Monitoring of pesticides residues in northwestern Mexico rivers. Acta Univ 27(1):24–33Google Scholar
  24. 24.
    Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments and fish from Lake Tashk, Iran. Achiev Life Sci 9:107–111Google Scholar
  25. 25.
    El-Gawad HA (2016) Validation method of organochlorine pesticides residues in water using gas chromatography–quadruple mass. Water Sci 30:96–107CrossRefGoogle Scholar
  26. 26.
    El Bouraie MM, El Barbary AA, Yehia M (2011) Determination of organochlorine pesticide (OCPs) in shallow observation wells from El-Rahawy contaminated area, Egypt. Environ Res Eng Manag 57:28–38Google Scholar
  27. 27.
    Badach H, Nazimek T, Kaminski R, Turski WA (2000) Organochlorine pesticides concentration in the drinking water from regions of extensive agriculture in Poland. Ann Agric Environ Med 7:25–28PubMedGoogle Scholar
  28. 28.
    Karadeniz H, Yenisoy-Karakaş S (2015) Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey. Environ Monit Assess 187:1–12CrossRefGoogle Scholar
  29. 29.
    Youssef L, Younes G, Kouzayha A, Jaber F (2015) Occurrence and levels of pesticides in South Lebanon water. Chem Spec Bioavailab 27:62–70CrossRefGoogle Scholar
  30. 30.
    Adeyemi D, Anyakora C, Ukpo G, Adedayo A, Darko G (2011) Evaluation of the levels of organochlorine pesticide residues in water samples of Lagos Lagoon using solid phase extraction method. J Environ Chem Ecotoxicol 3:160–166Google Scholar
  31. 31.
    Kouzayha A, Rabaa AR, Al Iskandarani M, Beh D, Budzinski H, Jaber F (2012) Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography–mass spectrometry. Am J Anal Chem 3:257–265CrossRefGoogle Scholar
  32. 32.
    El-Osmani R, Net S, Dumoulin D, Baroudi M, Bakkour H, Ouddane B (2014) Solid phase extraction of organochlorine pesticides residues in groundwater (Akkar Plain, North Lebanon). Int J Environ Res 8:903–912Google Scholar
  33. 33.
    Sabin GP, Prestes OD, Adaime MB, Zanella R (2009) Multiresidue determination of pesticides in drinking water by gas chromatography–mass spectrometry after solid-phase extraction. J Braz Chem Soc 20:918–925CrossRefGoogle Scholar
  34. 34.
    Fortuny G, Pineda L, Rúbies A, Centrich F, Companyó R (2013) Determination of 61 organic pollutants in drinking water by solid phase extraction followed by liquid and gas chromatography coupled to tandem mass spectrometry: an analytical strategy for a routine laboratory. Int J Environ Anal Chem 93:707–726CrossRefGoogle Scholar
  35. 35.
    Donato FF, Martins ML, Munaretto JS, Prestes OD, Adaime MB, Zanella R (2015) Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J Braz Chem Soc 26:2077–2087Google Scholar
  36. 36.
    Bhuiyan AA, Brotherton HO (2002) Solid phase extraction of pesticides with determination by gas chromatography. J Ark Acad Sci 56:18–26Google Scholar
  37. 37.
    Ruiz-Gil L, Romero-González R, Garrido-Frenich A, Martínez-Vidal JL (2008) Determination of pesticides in water samples by solid phase extraction and gas chromatography tandem mass spectrometry. J Sep Sci 31:151–161CrossRefPubMedGoogle Scholar
  38. 38.
    Fernández-Alba AR (2004) Chromatographic–mass spectrometric food analysis for trace determination of pesticide residues. El Servier, AmsterdamGoogle Scholar
  39. 39.
    Barriada-Pereira M, González-Castro MJ, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D, Fernández-Fernández E (2007) Comparison of pressurized liquid extraction and microwave assisted extraction for the determination of organochlorine pesticides in vegetables. Talanta 71(3):1345–1351CrossRefPubMedGoogle Scholar
  40. 40.
    Awofolu RO, Fatoki OS (2003) Persistent organochlorines pesticides residues in freshwater systems and sediments from the Eastern Cape, South Africa. Water SA 29:323–330Google Scholar
  41. 41.
    Gamon M, Lleó C, Ten A, Mocholí F (2001) Multiresidue determination of pesticides in fruit and vegetables by gas chromatography/tandem mass spectrometry. J AOAC Int 84:1209–1216PubMedGoogle Scholar
  42. 42.
    Şenyuva HZ, Gilbert J (2006) Assessment of the performance of pesticide-testing laboratories world-wide through proficiency testing. TrAC-Trend Anal Chem 25:554–562CrossRefGoogle Scholar
  43. 43.
    Poulsen ME, Christensen HB, Herrmann SS (2009) Proficiency test on incurred and spiked pesticide residues in cereals. Accred Qual Assur 14:477–485CrossRefGoogle Scholar
  44. 44.
    Medina-Pastor P, Fernández-Alba AR, Andersson A, Rodríguez-Torreblanca C (2010) European Commission proficiency tests for pesticide residues in fruits and vegetables. TrAC-Trend Anal Chem 29:70–83CrossRefGoogle Scholar
  45. 45.
    Poole CF (2007) Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. J Chromatogr A 1158:241–250CrossRefPubMedGoogle Scholar
  46. 46.
    Da Silva RJB, Camões MFG (2010) Comparability of measurement results for pesticide residues in foodstuffs: an open issue? Accred Qual Assur 15:691–704CrossRefGoogle Scholar
  47. 47.
    Kong MF, Chan S, Wong YC, Wong SK, Sin DWM (2007) Interlaboratory comparison for the determination of five residual organochlorine pesticides in ginseng root samples by gas chromatography. J AOAC Int 90:1133–1141PubMedGoogle Scholar
  48. 48.
    Chan KM, Cheung ST, Wong YL, Cheng AL, Mok CS, Wong YC, Wong WW, Tholen DW (2010) Proficiency tests for contaminants in food and herbal medicine in the Asia Pacific region. TrAC-Trend Anal Chem 29:562–576CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. B. Leyva-Morales
    • 1
    Email author
  • P. J. Bastidas-Bastidas
    • 2
  • R. Muñiz-Valencia
    • 3
  • S. G. Ceballos Magaña
    • 4
  • G. Ponce-Vélez
    • 5
  • D. Aguilera-Márquez
    • 6
  • P. Grajeda-Cota
    • 7
  • M. S. Navidad-Murrieta
    • 8
  • M. E. Flores-Munguía
    • 9
  • J. A. Ramírez-Castillo
    • 10
  • C. A. Romero-Bañuelos
    • 11
  • R. Ruíz-Ramos
    • 12
  • G. Aguilar-Zarate
    • 13
  • G. Huerta-Beristain
    • 14
  1. 1.Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de Nayarit, Secretaría de Investigación y PosgradoCentro Nayarita de Innovación y Transferencia de Tecnología, A.C. (CENITT)TepicMexico
  2. 2.Centro de Investigación en Alimentación y Desarrollo, A.C. (Unidad Culiacán)CuliacánMexico
  3. 3.Facultad de Ciencias QuímicasUniversidad de ColimaCoquimatlánMexico
  4. 4.Facultad de CienciasUniversidad de ColimaColimaMexico
  5. 5.Laboratorio de Contaminación Marina, Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  6. 6.Centro de Investigación en Alimentación y Desarrollo A.C. (Unidad Guaymas)GuaymasMexico
  7. 7.Centro de Investigación en Alimentación y Desarrollo, A.C. (Unidad Hermosillo)HermosilloMexico
  8. 8.Centro Nayarita de Innovación y Transferencia de Tecnología, A.C. (CENITT)-Universidad Autónoma de NayaritTepicMexico
  9. 9.Centro de Investigación en Alimentación y Desarrollo, A.C. (Unidad, Hermosillo)-Laboratorio de Residuos TóxicosHermosilloMexico
  10. 10.Centro Nacional de Prevención de DesastresCiudad de MéxicoMexico
  11. 11.Laboratorio de Contaminación y Toxicología Ambiental, Secretaria de Investigación y PosgradoUniversidad Autónoma de NayaritTepicMexico
  12. 12.Facultad de MedicinaUniversidad VeracruzanaVeracruzMexico
  13. 13.Centro de Investigación en Alimentación y Desarrollo, A.C. (Unidad Mazatlán)MazatlánMexico
  14. 14.Laboratorio de Investigación en Biotecnología, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de GuerreroChilpancingoMexico

Personalised recommendations