Accreditation and Quality Assurance

, Volume 22, Issue 3, pp 153–159

PAH analysis in biomass combustion wastes: an approach to evaluate bias and precision of analytical results using routine samples

  • Susana García-Alonso
  • Rosa María Pérez-Pastor
  • David Sanz-Rivera
  • Enrique Rojas-García
  • Jesús Rodríguez-Maroto
Practitioner's Report

Abstract

The aim of this work was to optimize and evaluate an analytical procedure to determine selected polycyclic aromatic hydrocarbons (PAHs) using real samples. Samples of ash were collected during biomass combustion tests under different operating conditions during one week. PAHs were quantified using liquid chromatography with fluorescence detection. Samples were extracted by a simple sonication/agitation method using small amounts of solvent and samples. This paper includes how the performance (bias and precision) of the proposed method was estimated from the analyses of samples. In order to obtain reliable data, we estimated the possible presence of two types of analytical bias: bias proportional bias to the level of analyte, expressed as recovery, and constant bias, comparing results from analyses of different ash masses. Apart from bias studies, the analytical variability was also evaluated as intermediate precision from the overall analyses of different routine samples, with different mass fraction levels and test dates. Intermediate precision values were reduced among 5 % to 10 % when measures on the optimized sample sizes and similar mass fraction levels were taken. The use of samples is rarely applied to assess trueness of analytical methods. Therefore, the presented findings can be considered as an interesting contribution to the analytical chemistry research field.

Keywords

PAHs Ash Biomass combustion waste Bias Intermediate precision 

Supplementary material

769_2017_1257_MOESM1_ESM.docx (181 kb)
Supplementary material 1 (DOCX 180 kb)

References

  1. 1.
    Obaidullah M, Bram S, Verma VK, De Ruyck J (2012) Int J Renew Energy Res 2(1):147–160Google Scholar
  2. 2.
    Tissari J (2013) BIOHEALTH ERA-NET bioenergy program 6th joint call on clean biomass combustion. http://www.eranetbioenergy.net/file/download/33744902
  3. 3.
    Abdel-Shafy HI, Mansour M (2016) Egypt J Pet 25:107–123CrossRefGoogle Scholar
  4. 4.
    Kim KH, Jahan S, Kabir E, Brown RJC (2013) Environ Int 60:71–81CrossRefGoogle Scholar
  5. 5.
    Oliveira Alves N, Brito J, Caumo S, Arana A, Souza Hacon S, Artaxo P, Hillamo R, Teinila K, Regina S, Medeiros B, Vasconcellos PC (2015) Atmos Environ 120:277–285CrossRefGoogle Scholar
  6. 6.
    Kalaitzoglou M, Terzi E, Samara C (2004) Atmos Environ 38:2545–2560CrossRefGoogle Scholar
  7. 7.
    Chao CYH, Kwong P, Wang JH, Cheung CW, Kendall G (2008) Bioresour Technol 99:83–93CrossRefGoogle Scholar
  8. 8.
    Qiu M, Sun K, Jin J, Han L, Sun H, Zhao Y, Xia X, Wu F, Xing B (2015) Environ Pollut 206:305–312CrossRefGoogle Scholar
  9. 9.
    Masto RE, Sarkar E, George J, Jyoti K, Dutta P, Ram LC (2015) Fuel Process Technol 132:139–152CrossRefGoogle Scholar
  10. 10.
    Straka P, Havelková M (2012) Acta Geodyn Geomater 9(4):481–490Google Scholar
  11. 11.
    Rey-Salgueiro L, Omil B, Merino A, Martínez-Carballo E, Simal-Gándara J (2016) Sci Total Environ 544:535–543CrossRefGoogle Scholar
  12. 12.
    Košnář Z, Mercl F, Perná I, Tlustoš P (2016) Sci Total Environ 563–564:53–61Google Scholar
  13. 13.
    Maroto A, Boqué R, Riu J, Rius FX (2001) Anal Chim Acta 440(2):171–184CrossRefGoogle Scholar
  14. 14.
    Maroto A, Boqué R, Riu J, Rius FX (2001) Anal Chim Acta 446(1–2):131–143CrossRefGoogle Scholar
  15. 15.
    García-Alonso S, Pérez-Pastor RM, García-Frutos FJ (2011) Accred Qual Assur 16:369–377CrossRefGoogle Scholar
  16. 16.
    Borjabad E, García S, Rodríguez Maroto J, Escalada R, Sanz D, Pascual A, Rojas E, Aragón G,Ibarra I, Múgica I, Gutiérrez-Canas C, Sanfelix V, Gomar S, Moliner R, Ramos R (2016) In: 24th European biomass conference and exhibition. http://www.eubcecom/conference/publications-of-papers/proceedingshtml
  17. 17.
    Tomic T, Nasipak N, Babic S (2012) Accred Qual Assur 17:291–300CrossRefGoogle Scholar
  18. 18.
    Gustavo González A, Herrador M, Asuero AG (1999) Talanta 48:729–736CrossRefGoogle Scholar
  19. 19.
    Yenisoy-Karakas S (2006) Anal Chim Acta 571:298–307CrossRefGoogle Scholar
  20. 20.
    Kelly WR, Fasset JD (1983) Anal Chem 55:1040–1044CrossRefGoogle Scholar
  21. 21.
    Eurachem/CITAC Guide CG4 (2012) Quantifying uncertainty in analytical measurement. www.eurachem.org
  22. 22.
    ISO 5725-3 (1994) Accuracy (trueness and precision) of measurement methods and results—Part 3: intermediate measures of the precision of a standard measurement method. International Organization of Standardization, GenevaGoogle Scholar
  23. 23.
    Barrado-Olmedo AI, Pérez-Pastor RM, García-Alonso S (2012) Talanta 101:428–434CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Susana García-Alonso
    • 1
  • Rosa María Pérez-Pastor
    • 1
  • David Sanz-Rivera
    • 1
  • Enrique Rojas-García
    • 1
  • Jesús Rodríguez-Maroto
    • 1
  1. 1.CIEMATMadridSpain

Personalised recommendations