Accreditation and Quality Assurance

, Volume 20, Issue 1, pp 3–16 | Cite as

Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat

  • Ringo Grombe
  • Günter Allmaier
  • Jean Charoud-Got
  • Agnieszka Dudkiewicz
  • Håkan Emteborg
  • Thilo Hofmann
  • Erik Huusfeldt Larsen
  • Angela Lehner
  • Meritxell Llinàs
  • Katrin Loeschner
  • Kristian Mølhave
  • Ruud J. Peters
  • John Seghers
  • Conxita Solans
  • Frank von der Kammer
  • Stephan Wagner
  • Stefan Weigel
  • Thomas P. J. Linsinger
General Paper

Abstract

The feasibility of producing colloidal silver nanoparticle reference materials and silver nanoparticle spiked reference matrix materials was investigated. Two concentrations of PVP-coated silver nanoparticle dispersions were evaluated and used to spike chicken meat, with the aim of producing a set of reference materials to support the development of analytical methods for the detection and quantification of nanoparticles in food. Aqueous silver nanoparticle (AgNP) dispersions were evaluated for their homogeneity of mass fraction and particle size and found sufficiently homogeneous to be used as reference materials. Stability studies at 4 °C, 18 °C and 60 °C demonstrated sufficient short- and long-term stability, although particle size decreases in a linear fashion at 60 °C. The AgNP dispersions were characterized for total Ag mass fraction by ICP-OES, dissolved Ag content by ultrafiltration-ICP-MS, as well as AgNP particle size by dynamic light scattering, transmission electron microscopy (TEM) and gas-phase electrophoretic molecular mobility analysis. Chicken breasts were homogenized by cryo-milling and spiked with aqueous AgNP dispersions. Rapid freezing over liquid nitrogen resulted in homogeneous and stable materials. The spiked chicken materials were characterized for their total Ag mass fraction by neutron activation analysis and for the AgNP particle size by TEM and single-particle inductively coupled plasma mass spectrometry. The observed differences in particle sizes between the spiked chicken samples and the original silver dispersions indicate relevant matrix effects. The materials demonstrate that production and characterization of reference materials for the detection and quantification of silver nanoparticles in meat are feasible, but challenges especially in assessing stability and having sufficiently precise methods for assessment of homogeneity and stability remain.

Keywords

Engineered nanoparticles Food Reference material Matrix reference materials Silver nanoparticles 

Supplementary material

769_2014_1100_MOESM1_ESM.docx (64 kb)
Supplementary material 1 (DOCX 64 kb)

References

  1. 1.
    EC Regulation 1169/2011 on the provision of food information to consumersGoogle Scholar
  2. 2.
    Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258CrossRefGoogle Scholar
  3. 3.
    von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:612–620CrossRefGoogle Scholar
  4. 4.
    Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 62:16–22CrossRefGoogle Scholar
  5. 5.
    ISO Guide 34, General requirements for the competence of reference materials producers, International Organization for Standardization, Geneva, Switzerland, 2009Google Scholar
  6. 6.
    Peters RJB, Rivera ZH, van Bemmel H, Marvin HJP, Weigel S, Bouwmeester H (2014) Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 406:3875–3885 doi:10.1007/s00216-013-7571-0 Google Scholar
  7. 7.
    Feichtmeier NS, Leopold K (2014) Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry. Anal Bioanal Chem 406:3887-3894. doi: 10.1007/s00216-013-7510-0 CrossRefGoogle Scholar
  8. 8.
    Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, Larsen EH (2013) Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem 405:8185–8195CrossRefGoogle Scholar
  9. 9.
    Gagné F, Turcotte P, Gagnon C (2012) Screening test of silver nanoparticles in biological samples by graphite furnace-atomic absorption spectrometry. Anal Bioanal Chem 404:2067–2072CrossRefGoogle Scholar
  10. 10.
    Menzel M, Bienert R, Bremser W, Girod M, Rolf S, Thünemann AF, Emmerling F (2013) Certification Report Certified Reference Material BAM-N001 Particle Size Parameters of Nano Silver, BAM Federal Institute for Materials Research and Testing, http://www.rm-certificates.bam.de/de/rm-certificates_media/rm_cert_particle_size/bam_n001repe.pdf
  11. 11.
    MacCuspie RI, Allen AJ, Martin MN, Hackley VA (2013) Just add water: reproducible singly dispersed silver nanoparticle suspensions on-demand. J Nanopart Res 15:1760CrossRefGoogle Scholar
  12. 12.
    Harmon AR, Kennedy AJ, Poda AR, Bednar AJ, Chappel MA, Steevens JA (2014) Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Environ Toxicol Chem 33:1783–1791CrossRefGoogle Scholar
  13. 13.
    Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: kinetics and Size Changes. Environ Sci Technol 48:11954–11961CrossRefGoogle Scholar
  14. 14.
    Grombe R, Allmaier G, Charoud-Got J, Dudkiewicz A, Emteborg H, Hofmann T, Lehner A, Llinas M, Seghers J, Solans C, von der Kammer F, Wagner S, Linsinger TPJ (2014) Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem 406: 3895–3907. doi: 10.1007/s00216-013-7554-1 Google Scholar
  15. 15.
    Dudkiewicz A, Boxall ABA, Chaudhry Q, Mølhave K, Tiede K, Hofmann P, Linsinger TPJ (2014) Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem. doi:10.1016/j.foodchem.2014.12.071 (in press)
  16. 16.
    van der Veen AMH, Linsinger TPJ, Pauwels J (2001) Uncertainty calculations in the certification of reference materials. 2. Homogeneity study. Accred Qual Assur 6:26–30CrossRefGoogle Scholar
  17. 17.
    Linsinger TPJ, Pauwels J, van der Veen AMH, Schimmel H, Lamberty A (2001) Homogeneity and stability of reference materials. Accred Qual Assur 6:20–25CrossRefGoogle Scholar
  18. 18.
    Lamberty A, Schimmel H, Pauwels J (1998) The study of the stability of reference materials by isochronous measurements. Fres J Anal Chem 360:359–361CrossRefGoogle Scholar
  19. 19.
    Loeschner K, Navratilova J, Legros S, Wagner S, Grombe R, Snell S, von der Kammer F, Larsen EH (2013) Optimisation and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles. J Chrom A 1272:116–125CrossRefGoogle Scholar
  20. 20.
    Cunningham WC, Stroube WB (1987) Application of an instrumental neutron activation analysis procedure to analysis of food. Sci Total Environ 63:29–43CrossRefGoogle Scholar
  21. 21.
    Linsinger TPJ, Peters R, Weigel S (2014) International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal Bioanal Chem 406:3835–3843CrossRefGoogle Scholar
  22. 22.
    ISO Guide 35, Reference materialsGeneral and statistical principles for certification, International Organization for Standardization, Geneva, Switzerland, 2006Google Scholar

Copyright information

© European Union 2015

Authors and Affiliations

  • Ringo Grombe
    • 1
  • Günter Allmaier
    • 2
  • Jean Charoud-Got
    • 1
  • Agnieszka Dudkiewicz
    • 3
    • 4
  • Håkan Emteborg
    • 1
  • Thilo Hofmann
    • 5
  • Erik Huusfeldt Larsen
    • 6
  • Angela Lehner
    • 2
  • Meritxell Llinàs
    • 7
  • Katrin Loeschner
    • 6
  • Kristian Mølhave
    • 8
  • Ruud J. Peters
    • 9
  • John Seghers
    • 1
  • Conxita Solans
    • 7
  • Frank von der Kammer
    • 5
  • Stephan Wagner
    • 5
  • Stefan Weigel
    • 9
  • Thomas P. J. Linsinger
    • 1
  1. 1.European Commission, Joint Research CentreInstitute for Reference Materials and Measurements (IRMM)GeelBelgium
  2. 2.Institute of Chemical Technologies and Analytics, Research Group Bio- and Polymer AnalysisVienna University of TechnologyViennaAustria
  3. 3.The Food and Environment Research AgencySand Hutton YorkUK
  4. 4.Environment DepartmentThe University of YorkHeslingtonUK
  5. 5.Department of Environmental GeosciencesUniversity of ViennaViennaAustria
  6. 6.National Food InstituteTechnical University of DenmarkSøborgDenmark
  7. 7.Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Institute of Advanced Chemistry and Centro de Investigaciones Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  8. 8.DTU NanotechTechnical University of DenmarkLyngbyDenmark
  9. 9.RIKILT – Institute of Food SafetyWageningen URWageningenThe Netherland

Personalised recommendations