Accreditation and Quality Assurance

, Volume 14, Issue 2, pp 79–86 | Cite as

A new traceability scheme for the development of international system-traceable persistent organic pollutant reference materials by quantitative nuclear magnetic resonance

  • Takeshi SaitoEmail author
  • Toshihide Ihara
  • Masayoshi Koike
  • Shinichi Kinugasa
  • Yoshinori Fujimine
  • Kazutoshi Nose
  • Tetsuya Hirai
General Paper


Quantitative nuclear magnetic resonance (qNMR) was used for the purity determination of neat compounds of persistent organic pollutants (POPs). qNMR is a unique quantitative method that is not only traceable to the International System of Units (SI), but it also does not require a standard of its own. The purities of the POP compounds determined in this work were traceable to a single certified reference material (CRM), which is extremely attractive for reference material producers. The purities observed by qNMR were equivalent to those observed by gas chromatography with flame ionization detection (GC/FID) or a differential scanning calorimetry (DSC) combined with a thermogravimetric analyzer (TGA). The uncertainties obtained by the qNMR method were comparable to being slightly larger than those observed by DSC.


Quantitative NMR Purity determination Uncertainty Traceability POPs 



This work was supported by grants-in-aid from the Ministry of Economy, Trade and Industry, Japan.


  1. 1.
    Wells RJ, Cheung J, Hook JM (2004) Accred Qual Assur 9:450–456CrossRefGoogle Scholar
  2. 2.
    Griffiths L, Irving AM (1998) Analyst 123:1061–1068CrossRefGoogle Scholar
  3. 3.
    Saito T, Nakaie S, Kinoshita M, Ihara T, Kinugasa S, Nomura A, Maeda T (2004) Metrologia 41:213–218CrossRefGoogle Scholar
  4. 4.
    Al-Deen TS, Hibbert DB, Hook JM, Wells RJ (2004) Accred Qual Assur 9:55–63CrossRefGoogle Scholar
  5. 5.
    Jancke H, Malz F, Haesselbarth W (2005) Accred Qual Assur 10:421–429CrossRefGoogle Scholar
  6. 6.
    Malz F, Jancke H (2005) J Pharm Biomed Anal 38:813–823CrossRefGoogle Scholar
  7. 7.
    Al Deen TS, Hibbert DB, Hook JM, Wells RJ (2002) Anal Chem Acta 474:125–135CrossRefGoogle Scholar
  8. 8.
    Malz F, Jancke H (2006) Anal Bioanal Chem 385:760–765CrossRefGoogle Scholar
  9. 9.
    Kupče Ē, Freeman R (1995) J Magn Reson A 115:273–276CrossRefGoogle Scholar
  10. 10.
    Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon Press, OxfordGoogle Scholar
  11. 11.
    Delsuc MA, Lallemand JY (1986) J Magn Reson 69:504–507Google Scholar
  12. 12.
    Pauli GF, Jaki BU, Lankin DC (2007) J Nat Prod 70:589–595CrossRefGoogle Scholar
  13. 13.
    Coplen TB, Böhlke JK, De Bièvre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Révész K, Rieder SE, Roseman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Pure Appl Chem 74:1987–2017CrossRefGoogle Scholar
  14. 14.
    Wieser ME (2006) Pure Appl Chem 78:2051–2066CrossRefGoogle Scholar
  15. 15.
    Coplen TB (2001) Pure Appl Chem 73:667–683CrossRefGoogle Scholar
  16. 16.
    Saito T, Ihara T, Sato H, Jancke H, Kinugasa S (2003) Bunseki Kagaku 52:1029–1036CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Takeshi Saito
    • 1
    Email author
  • Toshihide Ihara
    • 1
  • Masayoshi Koike
    • 1
  • Shinichi Kinugasa
    • 1
  • Yoshinori Fujimine
    • 2
  • Kazutoshi Nose
    • 2
  • Tetsuya Hirai
    • 2
  1. 1.National Metrology Institute of Japan, AISTTsukubaJapan
  2. 2.Otuka Pharmaceutical Co., Ltd.TokushimaJapan

Personalised recommendations