Advertisement

Accreditation and Quality Assurance

, Volume 11, Issue 8–9, pp 422–429 | Cite as

Macrozoobenthos interlaboratory comparison on taxonomical identification and counting of marine invertebrates in artificial sediment samples including testing various statistical methods of data evaluation

  • Petra SchillingEmail author
  • Martin Powilleit
  • Steffen Uhlig
General Paper

Abstract

A macrozoobenthos interlaboratory comparison was carried out by 16 laboratories to check the taxonomical expertise and the precision of sorting and counting. Participating laboratories had to determine and count in an artificial sediment sample 22 selected macrozoobenthos species taken from the western Baltic Sea. Two methods for the analysis of data were applied: assessment of qualitative and quantitative successful hits and the maximum-likelihood method.

The results of counting were mostly precise (one lab without mistake). Four laboratories had a rate of false determination of 10%, eight laboratories between 10 and 20% and four laboratories of more than 20%.

The species Arctica islandica, Retusa obtusa, Fabricia stellaris, Polydora quadrilobata, Pholoe assimilis, Microdeutopus gryllotalpa, and Corophium crassicorne caused some problems at the species determination step.

The comparison of the different methods of statistical data analysis shows that the maximum-likelihood method is more sensitive than the method of successful hits.

Keywords

Macrozoobenthos Taxonomical determination Counting Interlaboratory comparison Marine monitoring 

Notes

Acknowledgements

The authors would like to thank Renate Deutschmann and Eva Schmidt for their excellent technical assistance and all laboratories for participating in the interlaboratory comparison.

References

  1. 1.
    Ranasinghe JA, Montagne DE, Weisberg SB, Bergen M, Verlarde RG (2003) Environ Monitor Assess 81:199–206CrossRefGoogle Scholar
  2. 2.
    Ellis DV, Cross SF (1981) Water Res 15:1107–1108CrossRefGoogle Scholar
  3. 3.
    Rousseuuw PJ, Croux C (1993) J Am Stat Assoc 88:1273–1283CrossRefGoogle Scholar
  4. 4.
    Uhlig S (1997) Robust estimation of variance components with high breakdown point in the 1-way random effect model. In: Kitsos CP, Edler L (eds) Industrial statistics. Physica-Verlag, Heidelberg, pp 65–73Google Scholar
  5. 5.
    Müller C, Uhlig S (2001) Biometrika 88:353–366CrossRefGoogle Scholar
  6. 6.
    Hampel FR, Rousseeuw PJ, Ronchetti EM, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New YorkGoogle Scholar
  7. 7.
    McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, LondonGoogle Scholar
  8. 8.
    Petersen M (1998) J Mar Biol Assoc UK 78:1373–1376CrossRefGoogle Scholar
  9. 9.
    Bick A, Gosselck F (1985) Mitt Zoo Mus Berl 61/2:171–272Google Scholar
  10. 10.
    Hartmann-Schröder G (1996) Annelida, Borstenwürmer, Polychaeta. In Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und ihrer Lebensweise, Teil 58, 2nd edn. Gustav Fischer Verlag, Jena, pp 1–648Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Petra Schilling
    • 1
    Email author
  • Martin Powilleit
    • 2
  • Steffen Uhlig
    • 3
  1. 1.Laboratory for Water AnalysisFederal Environmental AgencyBerlinGermany
  2. 2.Institute of Biological Sciences, Marine BiologyUniversity of RostockRostockGermany
  3. 3.quo dataGesellschaft für Qualitätsmanagement und Statistik mbH, Siedlerweg 20Dresden-LangebrueckGermany

Personalised recommendations