Accreditation and Quality Assurance

, Volume 9, Issue 6, pp 340–348 | Cite as

Estimation of uncertainty in electrochemical amperometric measurement of dissolved oxygen concentration

  • Lauri Jalukse
  • Ivo Leito
  • Aleksei Mashirin
  • Toomas Tenno
Practitioner’s Report

Abstract

A procedure for the estimation of measurement uncertainty of dissolved oxygen (DO) concentration measurement based on the ISO approach is presented. It is based on a mathematical model that involves 14 input parameters. The uncertainty of DO concentration strongly depends on changes in experimental details (temperature difference between calibration and measurement, the time interval between calibration and measurement, etc.). The relative measurement uncertainty is, however, practically independent of the DO concentration itself. The uncertainty is the lowest if the calibration and the measurement are done at the same temperature and on the same day. A calculation tool is provided (in the form of a GUM Workbench file) for practitioners that can be used for uncertainty calculation of DO concentrations at very different experimental conditions.

Keywords

Measurement uncertainty Uncertainty budget Dissolved oxygen Galvanic sensor 

Notes

Acknowledgements

This work was supported by Grant 5475 from the Estonian Science Foundation. We are deeply indebted to the chief metrologist of the University of Tartu Dr Olev Saks and Dr. Koit Herodes for helpful discussions.

Supplementary material

C_O2_meas.pdf

C_O2_meas.pdf
(PDF 440 KB)

Input_values.xls

Input_values.xls
(Excel 30 KB)

C_O2_meas.SMU

C_O2_meas.pdf
(SMU 21 KB)

References

  1. 1.
    Chang SC, Stetter JR, Cha CS (1993) Talanta 40:461–477CrossRefGoogle Scholar
  2. 2.
    Hobbs BS, Tantram ADS, Chan-Henry R (1991) In: Mosely P, Norris J, Williams DE (eds) Techniques and mechanisms in gas sensing. Adam Hilger, IOP Publishing, BristolGoogle Scholar
  3. 3.
    Mashirin A, Koorits A, Tenno T (1986) Acta et Comment Univ Tartuensis 743:77–84Google Scholar
  4. 4.
    Hellat K, Mashirin A, Nei L, Tenno T (1986) Acta et Comment Univ Tartuensis 757:184–193Google Scholar
  5. 5.
    Marvet J, Raudsepp T, Tenno T (1969) Acta et Comment Univ Tartuensis 235:94–98Google Scholar
  6. 6.
    Nösel H (1973) Messtecnik 1:15–22Google Scholar
  7. 7.
    YSI incorporated Model 95 (1998) Handheld dissolved oxygen and temperature system operations manual, http://www.ysi.com
  8. 8.
    Instruction Manual (2001) General Cybernetics Corporation, O2xBOX dissolved oxygen analyser, http://www.generalcybernetics.com
  9. 9.
    Hitchman ML (1978) Measurement of dissolved oxygen—chemical analysis, vol 49. Wiley, New YorkGoogle Scholar
  10. 10.
    BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML (1993) Guide to the expression of uncertainty in measurement. International Organization for Standardization (ISO), GenevaGoogle Scholar
  11. 11.
    Ellison SLR, Rösslein M, Williams A (eds) (2000) Quantifying uncertainty in analytical measurement, 2nd edn. EURACHEM/CITAC: http://www.measurementuncertainty.org/
  12. 12.
    Tenno T (1986) Acta et Comment Univ Tartuensis 757:166–173Google Scholar
  13. 13.
    ISO 5814 (1990) Water quality—determination of dissolved oxygen—electrochemical probe method. ISO, GenevaGoogle Scholar
  14. 14.
    Mortimer CH (1981) Mitt Int Ver Limnol 22:1–23Google Scholar
  15. 15.
    Millard RC (1993) CTD oxygen calibration procedure. WHP—Operations Meth 3:1–9Google Scholar
  16. 16.
    Owens B, Millard R (1985) J Phys Oceanogr 15:621–631CrossRefGoogle Scholar
  17. 17.
    Application Note No. 13-1D (2001) SBE 13, 23, 30 dissolved oxygen sensor calibration and deployment, Sea-Bird Electronics, http://www.seabird.com
  18. 18.
    Tenno T, Mashirin A, Raudsepp I, Past V (1978) Acta et Comment Univ Tartuensis 441:138–144Google Scholar
  19. 19.
    Carpenter JH (1966) Limnol Oceanogr 11(2):264–277Google Scholar
  20. 20.
    Murray CN, Riley JP (1969) Deep-Sea Res 16:311–320Google Scholar
  21. 21.
    Truesdale GA, Downing AL, Lowden GF (1955) J Appl Chem 5:53–62Google Scholar
  22. 22.
    Landine RC (1971) Water Sewage Works 118:242–244Google Scholar
  23. 23.
    Montgomery AC, Thom NS (1964) J Appl Chem 14:280–296Google Scholar
  24. 24.
    Tenno T, Tamm L, Bergmann K, Past V (1976) Acta et Comment Univ Tartuensis 378:108–114Google Scholar
  25. 25.
    Raudsepp T (1974) Acta et Comment Univ Tartuensis 332:112–115Google Scholar
  26. 26.
  27. 27.
    Elmore HL, Hayes TW (1960) J San Eng Div 86:41–53Google Scholar
  28. 28.
    Green EJ, Carritt DE (1967) J Mar Res 25:140–147Google Scholar
  29. 29.
    Weiss RF (1970) Deep-Sea Res 17:721–735Google Scholar
  30. 30.
    Benson BB, Krause D (1980) Limnol Oceanogr 25:662–671Google Scholar
  31. 31.
    American Public Health Association (1975) Standard methods for the examination of water and waste water, 14th edn. American Public Health Association, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Lauri Jalukse
    • 1
  • Ivo Leito
    • 1
  • Aleksei Mashirin
    • 1
  • Toomas Tenno
    • 1
  1. 1.Department of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations