Advertisement

Grundwasser

, Volume 21, Issue 1, pp 29–41 | Cite as

Fault controlled geochemical properties in Lahendong geothermal reservoir Indonesia

  • Maren BrehmeEmail author
  • Fiorenza Deon
  • Christoph Haase
  • Bettina Wiegand
  • Yustin Kamah
  • Martin Sauter
  • Simona Regenspurg
Fachbeitrag

Abstract

Rock and fluid geochemical data from Lahendong, Indonesia, were analyzed to evaluate the influence of fault zones on reservoir properties. It was found that these properties depend on fault-permeability controlled fluid flow.

Results from measurements of spring and well water as well as rocks and their hydraulic properties were combined with hydrochemical numerical modeling. The models show that the geothermal field consists of two geochemically distinct reservoir sections. One section is characterized by acidic water, considerable gas discharge and high geothermal-power productivity—all related to increased fault zone permeability. The other section is characterized by neutral water and lower productivity.

Increased fluid flow in the highly fractured and permeable areas enhances chemical reaction rates. This results in strong alteration of their surrounding rocks. Numerical models of reactions between water and rock at Lahendong indicate the main alteration products are clay minerals. A geochemical conceptual model illustrates the relation between geochemistry and permeability and their distribution within the area.

Our conceptual model illustrates the relation between geochemistry and fault-zone permeability within the Lahendong area. Further mapping of fault-related permeability would support sustainable energy exploitation by avoiding low-productive wells or the production of highly corroding waters, both there and elsewhere in the world.

Keywords

Hydrochemistry Alteration Subsurface fluid-flow Fault-permeability Structural controls Hydrogeology 

Durch Störungszonen kontrollierte geochemische Eigenschaften des geothermischen Reservoirs Lahendong in Indonesien

Zusammenfassung

Die Analyse von geochemischen Daten am Standort Lahendong in Indonesien wird in dieser Studie für die Untersuchung des Einflusses von Störungszonen auf Reservoireigenschaften genutzt. Diese Eigenschaften sind von Grundwasserbewegungen in Störungszonen und deren Permeabilitäten abhängig.

In unserem Ansatz werden die Ergebnisse von physikochemikalischen Messungen an Brunnen und Quellen, Laboruntersuchungen zur Zusammensetzung von Wasser und Gesteinen und deren hydraulische Eigenschaften mit den Resultaten aus hydrochemischen Simulationen kombiniert. Die Ergebnisse zeigen, dass das geothermische Feld aus zwei geochemisch unterschiedlichen Reservoirbereichen besteht, wovon eins durch saures Wasser, erhöhte Gasaustritte und höhere Produktionsraten charakterisiert ist und das andere durch neutrale Wässer charakterisiert ist. Durch intensive Grundwasserbewegungen und chemische Reaktionen in Störungszonen, weisen Gesteine vor allem in diesen Bereichen starke Alterationserscheinungen auf. Die chemischen Reaktionen zwischen Wasser und Gestein wurden durch numerische Simulationen abgebildet und zeigen, dass durch die Alterationsprozesse vor allem Tonminerale gebildet werden. Ein konzeptionelles Modell stellt den Zusammenhang zwischen geochemischen Eigenschaften und der Permeabilitätsverteilung im Gebiet dar.

Unser konzeptionelles Modell erklärt den Zusammenhang zwischen Geochemie und Permeabilitäten in Störungszonen in Lahendong. Die Untersuchung von Permeabilitätsverteilungen in geothermischen Reservoiren ist wichtig für eine nachhaltige Nutzung und verhindert das Bohren an unproduktiven Standorten, sowie die Förderung von sauren, aggressiven Wässern in Lahendong und vergleichbaren Standorten.

Notes

Acknowledgments

The authors acknowledge the continuous support within the team of the International Centre for Geothermal Research. We thank S. Tonn and K. Günther for fluid-analyses, R. Naumann, A. Gottsche, H. Liep and M. Ospald for geochemical analyses and Dr. F. Bulut for remarks on the manuscript. We would like to thank Dr. H. Milsch, B. Peters and D. Otten for helping at the Gas-Permeameter. Prof. M. Hochstein is greatly acknowledged for continuous fruitful discussions, which made this study possible. M. Andhika supported this work with assisting in communication in Indonesia and continuos discussion on the topic. I am deeply grateful to Prof. P. Malin, who reviewed the manuscript and took care of linguistic issues. Giggenbach-diagrams have been done with the help of an excel-sheet provided by Powell and Cumming (2010).

References

  1. Appelo, C.A.J.: Principles , caveats and improvements in databases for calculating hydrogeochemical reactions in saline waters from 0 to 200 ° C and 1 to 1000 atm. Appl. Geochemistry 55, 62–71 (2015)Google Scholar
  2. Arnorsson, S.: The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems. J. Volcanol. Geotherm. Res. 23, 299–335 (1985)CrossRefGoogle Scholar
  3. Arnorsson, S.: Arnorsson-Isotopic and chemical techniques in geothermal exploration, development and use. Report, International Atomic Energy Agency, Vienna (2000)Google Scholar
  4. Arnorsson, S., Stefansson, A., Bjarnason, J.O.: Fluid-Fluid Interactions in Geothermal Systems. Rev. Mineral. Geochem. 65, 259–312 (2007). doi: 10.2138/rmg.2007.65.9 CrossRefGoogle Scholar
  5. Belsky, A., Hellenbrandt, M., Karen, V.L., Luksch, P.: New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B. 58, 364–369 (2002) doi: 10.1107/S0108768102006948 CrossRefGoogle Scholar
  6. Bergerhof, G., Brown, I.D.: Inorganic crystal structure database. Chrystallographic Database, International Union of Chrystallography (1987)Google Scholar
  7. Brehme, M., Scheytt, T., Çelik, M., Dokuz, U.E.: Hydrochemical characterisation of ground and surface water at Dörtyol/Hatay/Turkey. Environ. Earth Sci. 63, 1395–1408 (2010). doi: 10.1007/s12665-010-0810-1 CrossRefGoogle Scholar
  8. Brehme, M., Haase, C., Regenspurg, S., Moeck, I., Deon, F., Wiegand, B.A., Kamah, Y., Zimmermann, G., Sauter, M.: Hydrochemical patterns in a structurally controlled geothermal system. Mineral. Mag. 77, 767 (2013) doi: 10.1180/minmag.2013.077.5.2 Google Scholar
  9. Brehme, M., Moeck, I., Kamah, Y., Zimmermann, G., Sauter, M.: A hydrotectonic model of a geothermal reservoir—A study in Lahendong, Indonesia. Geothermics 51, 228–239 (2014). doi: 10.1016/j.geothermics.2014.01.010 CrossRefGoogle Scholar
  10. Browne, P.R.L.: Hydrothermal alteration as an aid in investigating geothermal fields. Geothermics. 2, 564–570 (1970) doi: 10.1016/0375-6505(70)90057-X CrossRefGoogle Scholar
  11. Corsi, R.: Scaling and corrosion in geothermal equipment: problems and preventive measures. Geothermics. 15, 839–856 (1986)CrossRefGoogle Scholar
  12. Deon, F., Regenspurg, S., Zimmermann, G.: Geothermics Geochemical interactions of Al2O3 -based proppants with highly saline geothermal brines at simulated in situ temperature conditions. Geothermics. 47, 53–60 (2013)CrossRefGoogle Scholar
  13. Deon, F., Förster, H.-J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M.S., Putriatni, D.J.: Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia). Geotherm. Energy. 3, 20 (2015)CrossRefGoogle Scholar
  14. Ellis, A.J., Mahon, W.A.J.: Chemistry and geothermal systems. Academic Press Inc, New York (1977)Google Scholar
  15. Giencke, J.: Introduction to EVA. Bruker Cooperation, Billerica (2007)Google Scholar
  16. Giggenbach, W.F.: Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta. 52, 2749–2765 (1988). doi: 10.1016/0016-7037(88)90143-3 CrossRefGoogle Scholar
  17. Hernandez Castaneda, M.C.: Characterization of silica precipitates formed at geothermal conditions. Universität Freiburg, Freiburg im Breisgau (2014)Google Scholar
  18. John, L.: Hydrothermal alteration mineralogy in geothermal fields with case examples from Olkaria Domes geothermal field, Kenya. Report, UNU-GTP (2007)Google Scholar
  19. Koestono, H.: Lahendong Geothermal Field, Indonesia: Geothermal model based on wells LHD-23 and LHD-28. Master-Thesis at University of Iceland (2010)Google Scholar
  20. Kwiatek, G., Bulut, F., Bohnhoff, M., Dresen, G., Oates, S., Santos, P. A.: High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador, (2013). Geothermics, doi: 10.1016/j.geothermics.2013.09.008Google Scholar
  21. Larson, A.C., Von Dreele, R.B.: GSAS—General Structure Analysis System. Los Alamos National Laboratory Report LAUR 86–748, University of California (2004)Google Scholar
  22. Layman, E., Soemarinda, S.: The Patuha Vapor-Dominated Resource West Java, Indonesia. Proceedings of the 28th Workshop on Geothermal Reservoir Engineering, pp. 56–65. Stanford University, Stanford (2003)Google Scholar
  23. Milsch, H., Priegnitz, M., Blöcher, G.: Permeability of gypsum samples dehydrated in air. Geophys. Res. Lett. 38, 6 (2011). doi: 10.1029/2011GL048797 CrossRefGoogle Scholar
  24. Moeck, I., Dussel, M.: Fracture networks in Jurassic carbonate rock of the Algarve Basin (South Portugal): Implications for aquifer behaviour related to the recent stress field. IHA Sel. Pap. Ser. 9, 479–488 (2007)Google Scholar
  25. Nicholson, K.: Geothermal fluids—chemistry and exploration techniques. Springer, Berlin (1993)Google Scholar
  26. Powell, T., Cumming, W.: Spreadsheets for geothermal water and gas geochemistry. Proceedings of the 35th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford (2010)Google Scholar
  27. Parkurst, D., Thorstenson, D., Plummer, L.: PHREEQE, a computer program for geochemical calculations, US Geological Survey Water. Report, USGS (1980)Google Scholar
  28. Parkhurst, D., Appelo, C.A.J.: Description of Input and Examples for PHREEQC Version 3a Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. Model. Tech. B. 6 497 (2013)Google Scholar
  29. Robinson, D., Peng, D., Chung, S.: The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol. Fluid Phase Equilib. 24, 25–41 (1985). doi:10.1016/0378-3812(85)87035-7Google Scholar
  30. Reyes, A., Giggenbach, W., Saleras, J.: Petrology and Geochemistry of Alto Peak, a Vapor-cored Hydrothermal System, Leyte Province, Philippines. Geothermics 22, 479–519 (1993)Google Scholar
  31. Schön, J.H.: Physical properties of rocks. Elsevier Ltd., Amsterdam (2004)Google Scholar
  32. Siahaan, E.E., Soemarinda, S., Fauzi, A., Silitonga, T., Azimudin, T., Raharjo, I.B.: Tectonism and Volcanism Study in the Minahasa Compartment of the North Arm of Sulawesi Related to Lahendong Geothermal Field, Indonesia, in: Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005 (2005)Google Scholar
  33. Sriwana, T., van Bergen, M.J., Varekamp, J.C., Sumarti, S., Takano, B., van Os, B.J.H., Leng, M.J.: Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia. J. Volcanol. Geotherm. Res. 97, 77–104 (2000). doi: 10.1016/S0377-0273(99)00178-X CrossRefGoogle Scholar
  34. Surachman, S., Tandirerung, S.A., Buntaran, T., Robert, D.: Assessment of the Lahendong geothermal field, North Sulawesi, Indonesia, in: Proceeding Indonesian Petroleum Association, Sixteenth Annual Convention, October 1987. pp. 385–398 (1987)Google Scholar
  35. Tanikawa, W., Shimamoto, T.: Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. Int. J. Rock Mech. Min. Sci. 46, 229–238 (2009). doi: 10.1016/j.ijrmms.2008.03.004 CrossRefGoogle Scholar
  36. Toby, B.: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  37. Truesdell, A.H., Stallard, M.L., Trujillo, P.E., Counce, D., Janik, C.J., Winnett, T.L., Goff, F., Shevenell, L.: Interpretation of fluid chemistry from the PLTG-1 exploratory drill hole, Platanares. Honduras. Geotherm. Resour. Counc. Transactions. 11, 217–222 (1987)Google Scholar
  38. Utami, P.: Hydrothermal alteration and the evolution of the Lahendong geothermal system, North Sulawesi, Indonesia. Dissertation, University of Auckland, Auckland (2011)Google Scholar
  39. Utami, P., Siahaan, E.E., Azimudin, T., Browne, P.R.L., Simmons, S.F.: Overview of the Lahendong geothermal field, North Sulawesi, Indonesia: A progress report, in: Proceedings of the 26th NZ Geothermal Workshop 2004. pp. 1–6 (2004)Google Scholar
  40. White, D.E.: Thermal Water of Volcanic origin. Bull. Geol. Soc. Am. 68, 1637–1658 (1957)CrossRefGoogle Scholar
  41. Wiegand, B.A., Brehme, M., Teuku, F., Amran, I.A., Prasetio, R., Kamah, Y., Sauter, M.: Geochemical and isotopic investigation of fluids from Lahendong geothermal field. Mineral. Mag. 77, 2491 (2013). doi: 10.1180/minmag.2013.077.5.23 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maren Brehme
    • 1
    Email author
  • Fiorenza Deon
    • 1
  • Christoph Haase
    • 2
  • Bettina Wiegand
    • 3
  • Yustin Kamah
    • 4
  • Martin Sauter
    • 3
  • Simona Regenspurg
    • 1
  1. 1.Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, International Centre for Geothermal ResearchPotsdamGermany
  2. 2.Institute for GeosciencesKiel UniversityKielGermany
  3. 3.Applied GeologyUniversity of GöttingenGöttingenGermany
  4. 4.Upstream Technology Center PertaminaJakartaIndonesia

Personalised recommendations