Advertisement

Grundwasser

, Volume 20, Issue 1, pp 53–67 | Cite as

Submarine groundwater discharge from tropical islands: a review

  • Nils MoosdorfEmail author
  • Thomas Stieglitz
  • Hannelore Waska
  • Hans H. Dürr
  • Jens Hartmann
Übersichtsbeitrag

Abstract

Submarine groundwater discharge (SGD) is a rarely recognized pathway for nutrients and other solutes from land to sea. The sensitive coastal ecosystems around tropical islands could be particularly affected by nutrient discharge associated with SGD in relation to surficial nutrient transport by rivers, but have received comparatively little attention to date. This study reviews the findings of local assessments of submarine groundwater discharge from tropical islands. In addition, the ratio of coast length and land area of individual land bodies is suggested as an appropriate first-order estimate of the relevance of SGD versus river discharge, demonstrating the potential relative importance of SGD from tropical islands over rivers. The review highlights the need for targeted research of submarine groundwater discharge from tropical islands and highlights its relevance for biogeochemical fluxes in these geographic settings.

Keywords

Submarine groundwater discharge Biogeochemistry Coastal zone Nutrient Tropical island 

Submariner Grundwasserabfluss von tropischen Inseln – Ein Review

Zusammenfassung

Submariner Grundwasserabfluss (SGD) vom Land in die Ozeane ist ein wenig beachteter Transportweg für gelöste Stoffe. Existierende Studien betonen allerdings seine Wichtigkeit für die Nährstoffversorgung der Küstengewässer. Insbesondere in Küstenökosystemen im Bereich tropischer Inseln kann SGD im Verhältnis zum Flusseintrag die Nährstoffbudgets dominieren, dort hat SGD aber bisher nur wenig Interesse erfahren. Diese Studie beleuchtet die Erkenntnisse lokaler Untersuchungen des SGD tropischer Inseln. Darüber hinaus wird das Verhältnis von Küstenlänge und Landfläche einer Insel als grobe Abschätzung des Verhältnisses von SGD und Flusseinträgen vorgeschlagen und damit die potenzielle Wichtigkeit von SGD von tropischen Inseln gezeigt. Das Review zeigt den Bedarf an systematischen Feldstudien über SGD von tropischen Inseln und hebt dessen Bedeutung für biogeochemische Stoffkreisläufe dieser Regionen hervor.

Notes

Acknowledgements

Nils Moosdorf is funded by the BMBF Project “SGD-NUT” (Grant 01LN1307A). Jens Hartmann is supported through the German Research Foundation (EXC177). This research utilized the Global Coastline Dataset v1 copyrighted by ISCIENCES, L.L.C., www.isciences.com; we acknowledge ISCIENCES L.L.C. to provide it free of charge for our research. We also acknowledge the field scientists who collected the data we now combine. Two anonymous reviewers are acknowledged, whose comments helped to improve the manuscript.

References

  1. Allaway, W.G., Ashford, A.E.: Nutrient input by seabirds to the forest on a coral island of the Great Barrier-Reef. Mar. Ecol.-Prog. Ser. 19, 297–298 (1984)Google Scholar
  2. Basterretxea, G., Tovar-Sanchez, A., Beck, A.J., Masque, P., Bokuniewicz, H.J., Coffey, R., Duarte, C.M., Garcia-Orellana, J., Garcia-Solsona, E., Martinez-Ribes, L., Vaquer-Sunyer, R.: Submarine groundwater discharge to the coastal environment of a mediterranean island (Majorca, Spain): ecosystem and biogeochemical significance. Ecosystems. 13, 629–643 (2010)Google Scholar
  3. Beck, A.J., Rapaglia, J.P., Cochran, J.K., Bokuniewicz, H.J.: Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Mar. Chem. 106, 419–441 (2007)Google Scholar
  4. Behrenfeld, M.J., Falkowski, P.G.: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997)Google Scholar
  5. Beusen, A.H.W., Slomp, C.P., Bouwman, A.F.: Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ. Res. Lett. 8, 6 (2013)Google Scholar
  6. Bienfang, P.: Water quality characteristics of honokohau harbor: a subtropical embayment affected by groundwater intrusion. Pacific Science. 34, 279–291 (1980)Google Scholar
  7. Blanco, A.C., Nadaoka, K., Yamamoto, T.: Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Mar. Environ. Res. 66, 520–535 (2008)Google Scholar
  8. Blanco, A.C., Watanabe, A., Nadaoka, K., Motooka, S., Herrera, E.C., Yamamoto, T.: Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Mar. Pollut. Bull. 62, 770–785 (2011)Google Scholar
  9. Bokuniewicz, H.: Groundwater seepage into Great South Bay, New-York. Estuar. Coast Mar. Sci. 10, 437–444 (1980)Google Scholar
  10. Bokuniewicz, H., Buddemeier, R., Maxwell, B., Smith, C.: The typological approach to submarine groundwater discharge (SGD). Biogeochemistry. 66, 145–158 (2003)Google Scholar
  11. Bowen, J.L., Kroeger, K.D., Tomasky, G., Pabich, W.J., Cole, M.L., Carmichael, R.H., Valiela, I.: A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: mechanisms and effects. Appl. Geochem. 22, 175–191 (2007)Google Scholar
  12. Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G., Hilton-Taylor, C.: Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002)Google Scholar
  13. Buddemeier, R.: Groundwater discharge in the coastal zone. In: Proceedings of an International Symposium, Moscow, Russia (1996)Google Scholar
  14. Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., Taniguchi, M.: Groundwater and pore water inputs to the coastal zone. Biogeochemistry. 66, 3–33 (2003)Google Scholar
  15. Burnett, W.C., Dulaiova, H.: Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radioactiv. 69, 21–35 (2003)Google Scholar
  16. Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., Moore, W.S., Oberdorfer, J.A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A.M.G., Rajar, R., Ramassur, R.T., Scholten, J., Stieglitz, T., Taniguchi, M., Turner, J.V.: Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367, 498–543 (2006)Google Scholar
  17. Cable, J.E., Burnett, W.C., Chanton, J.P., Weatherly, G.L.: Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth. Planet. Sc. Lett. 144, 591–604 (1996)Google Scholar
  18. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.C., Chapman, H.: Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth. Planet. Sc. Lett. 303, 48–58 (2011)Google Scholar
  19. Capone, D.G., Bautista, M.F.: A groundwater source of nitrate in nearshore marine-sediments. Nature. 313, 214–216 (1985)Google Scholar
  20. Cardenas, M.B., Zamora, P.B., Siringan, F.P., Lapus, M.R., Rodolfo, R.S., Jacinto, G.S., San Diego-McGlone, M.L., Villanoy, C.L., Cabrera, O., Senal, M.I.: Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, Rn-222, salinity measurements. Geophys. Res. Lett. 37, 6 (2010)Google Scholar
  21. Charette, M.A., Sholkovitz, E.R.: Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett. 29 (2002)Google Scholar
  22. Church, T.M.: An underground route for the water cycle. Nature. 380, 579–580 (1996)Google Scholar
  23. Cole, M.L., Kroeger, K.D., Mcclelland, J.W., Valiela, I.: Effects of watershed land use on nitrogen concentrations and delta(15) nitrogen in groundwater. Biogeochemistry. 77, 199–215 (2006)Google Scholar
  24. Cuet, P., Naim, O., Faure, G., Conan, J.Y.: Nutrient-rich groundwater impact on benthic communities of la Saline fringing reef (Reunion Island, Indian Ocean): preliminary results. In: Proceedings of the Sixth International Coral Reef Symposium. Townsville, Australia. 8th–12th August 1988. Vol. 2: Contributed Papers, 207–212 (1988)Google Scholar
  25. Cuet, P., Atkinson, M.J., Blanchot, J., Casareto, B.E., Cordier, E., Falter, J., Frouin, P., Fujimura, H., Pierret, C., Susuki, Y., Tourrand, C.: CNP budgets of a coral-dominated fringing reef at La Réunion, France: coupling of oceanic phosphate and groundwater nitrate. Coral Reefs. 30, 45–55 (2011)Google Scholar
  26. Cyronak, T., Santos, I.R., Erler, D.V., Eyre, B.D.: Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences. 10, 2467–2480 (2013)Google Scholar
  27. D’Elia, C.F., Webb, K.L., Porter, J.W.: Nitrate-Rich groundwater inputs to Discovery Bay, Jamaica–a Significant source of N to local coral reefs. B. Mar. Sci. 31, 903–910 (1981)Google Scholar
  28. Denton, G.R.W., Sian-Denton, C.M.: Groundwater monitoring on guam: management responses to recent water quality violations. Ground Water Monit. Remediat. 30, 127–133 (2010)Google Scholar
  29. Derry, L.A., Kurtz, A.C., Ziegler, K., Chadwick, O.A.: Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature. 433, 728–731 (2005)Google Scholar
  30. Dimova, N.T., Swarzenski, P.W., Dulaiova, H., Glenn, C.R.: Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems. J. Geophys. Res.-Oceans. 117, 12 (2012)Google Scholar
  31. Duarte, T.K., Hemond, H.F., Frankel, D., Frankel, S.: Assessment of submarine groundwater discharge by handheld aerial infrared imagery: case study of Kaloko fishpond and bay, Hawai’i. Limnol. Oceanogr. Meth. 4, 227–236 (2006)Google Scholar
  32. Duncan, D.: Freshwater under threat: Pacific Islands, United Nations Environment Programme, Bankok (2011)Google Scholar
  33. Dürr, H.H., Laruelle, G.G., van Kempen, C.M., Slomp, C.P., Meybeck, M., Middelkoop, H.: Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuar. Coast. 34, 441–458 (2011)Google Scholar
  34. Elhatip, H.: The use of hydrochemical techniques to estimate the discharge of Ovacik submarine springs on the Mediterranean coast of Turkey. Environ. Geol. 43, 714–719 (2003)Google Scholar
  35. Emery, K.O.: Marine geology of Guam. 76; Washington, (1962)Google Scholar
  36. Fabricius, K.E.: Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005)Google Scholar
  37. Falkland, A.: Hydrology and water resources of small islands a practical guide, UNESCO, Paris (1991)Google Scholar
  38. Fischer, W.A., Landis, G.H., Moxham, R.M., Polcyn, F.: Infrared surveys of hawaiian volcanoes–aerial surveys with infrared imaging radiometer depict volcanic thermal patterns + structural features. Science. 146, 733–742 (1964)Google Scholar
  39. Fleury, P., Bakalowicz, M., de Marsily, G.: Submarine springs and coastal karst aquifers: a review. J. Hydrol. 339, 79–92 (2007)Google Scholar
  40. Gamble, D.W., Taborosi, D., Mylroie, J.E., Jenson, J.W., Carew, J.L., Jocson, J.M.U., Mylroie, J., Vann, D.T.: The use of water temperature to characterize groundwater discharge of a coastal fracture on Guam, USA. J. Coast. Res. 19, 462–471 (2003)Google Scholar
  41. Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., Garces, E., Radakovitch, O., Mayer, A., Estrade, S., Basterretxea, G.: An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry. 97, 211–229 (2010a)Google Scholar
  42. Garcia-Solsona, E., Garcia-Orellana, J., Masque, P., Rodellas, V., Mejias, M., Ballesteros, B., Dominguez, J.A.: Groundwater and nutrient discharge through karstic coastal springs (Castello, Spain). Biogeosciences. 7, 2625–2638 (2010b)Google Scholar
  43. Garrison, G.H., Glenn, C.R., McMurtry, G.M.: Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i. Limnol. Oceanogr. 48, 920–928 (2003)Google Scholar
  44. Gendre, F., Beck, C., Ruch, P., Kubler, B.: Human impacts on coral ecosystems at mauritius island–coprostanol in surface sediments. Eclogae Geol. Helv. 87, 357–367 (1994)Google Scholar
  45. Gilmartin, M., Revelante, N.: The ‘island mass’ effect on the phytoplankton and primary production of the Hawaiian Islands. J. Exp. Mar. Bio. Ecol. 16, 181–204 (1974)Google Scholar
  46. Gobler, C.J., Sanudo-Wilhelmy, S.A.: Temporal variability of groundwater seepage and brown tide blooms in a long Island embayment. Mar. Ecol.-Prog. Ser. 217, 299–309 (2001)Google Scholar
  47. Hartmann, J., Moosdorf, N.: Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—implications for global scale analysis. Chem. Geol. 287, 125–157 (2011)Google Scholar
  48. Hartmann, J., Moosdorf, N.: The new global lithological map database GLiM: a representation of rock properties at the earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012)Google Scholar
  49. Hartmann, J., Dürr, H.H., Moosdorf, N., Meybeck, M., Kempe, S.: The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. Int. J. Earth Sci. 101, 365–376 (2012)Google Scholar
  50. Hays, R.L., Ullman, W.J.: Dissolved nutrient fluxes through a sandy estuarine beachface (Cape Henlopen, Delaware, USA): contributions from fresh groundwater discharge, seawater recycling, diagenesis. Estuar. Coast. 30, 710–724 (2007)Google Scholar
  51. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005)Google Scholar
  52. Houk, P., Golbuu, Y., Gorong, B., Gorong, T., Fillmed, C.: Watershed discharge patterns, secondary consumer abundances, and seagrass habitat condition in Yap, Micronesia. Mar. Pollut. Bull. 71, 209–215 (2013)Google Scholar
  53. Howarth, R.W., Marino, R.: Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006)Google Scholar
  54. Hu, C.M., Muller-Karger, F.E., Swarzenski, P.W.: Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett. 33, 5 (2006)Google Scholar
  55. Huang, K.F., You, C.F., Chung, C.H., Lin, I.T.: Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: a novel tool for tracing water masses and submarine groundwater discharge. Geochem. Geophys. Geosyst. 12, 14 (2011)Google Scholar
  56. Hunt, B.: An analysis of the groundwater resources of Tongatapu Island, Kingdom of Tonga. J. Hydrol. 40, 185–196 (1979)Google Scholar
  57. Hwang, D.W., Lee, Y.W., Kim, G.: Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr. 50, 1393–1403 (2005)Google Scholar
  58. ISCIENCES L.L.C.: Global Coastline Dataset v1; Ann Arbor, MI (2009)Google Scholar
  59. Jeong, J., Kim, G., Han, S.: Influence of trace element fluxes from submarine groundwater discharge (SGD) on their inventories in coastal waters off volcanic island, Jeju, Korea. Appl. Geochem. 27, 37–43 (2012)Google Scholar
  60. Ji, T., Du, J.Z., Moore, W.S., Zhang, G.S., Su, N., Zhang, J.: Nutrient inputs to a Lagoon through submarine groundwater discharge: The case of Laoye Lagoon, Hainan, China. J. Mar. Syst. 111, 253–262 (2013)Google Scholar
  61. Jickells, T.D.: Nutrient biogeochemistry of the coastal zone. Science. 281, 217–222 (1998)Google Scholar
  62. Johannes, R.E.: The ecological significance of the submarine discharge of groundwater. Mar. Ecol.-Prog. Ser. 3, 365–373 (1980)Google Scholar
  63. Johnson, A.G., Glenn, C.R., Burnett, W.C., Peterson, R.N., Lucey, P.G.: Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophys. Res. Lett. 35, 6 (2008)Google Scholar
  64. Join, J.L., Pomme, J.B., Coudray, J., Daessle, M.: Charactérisation des aquifères basaltiques en domaine littoral. Impact d’un récif corallien. Hydrogéologie. 2, 107–115 (1988)Google Scholar
  65. Kay, E.A., Lau, L.S., Stroup, E.D., Dollar, S.J., Fellows, D.P., Young, R.H.F.: Hydrologic and ecologic inventories of the coastal waters of West Hawaii, Water Resources Research Center, University of Hawaii at Manoa, Honolulu (1977)Google Scholar
  66. Kim, G., Lee, K.K., Park, K.S., Hwang, D.W., Yang, H.S.: Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett. 30, 4 (2003)Google Scholar
  67. Kim, G., Kim, J.S., Hwang, D.W.: Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnol. Oceanogr. 56, 673–682 (2011)Google Scholar
  68. King, J.N.: Synthesis of benthic flux components in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Water Resour. Res. 48, 10 (2012)Google Scholar
  69. Knee, K., Street, J., Grossman, E., Paytan, A.: Submarine ground-water discharge and fate along the coast of Kaloko-Honokohau National Historical Park, Island of Hawai’i, Part 2, Spatial and temporal variations in salinity, radium-isotope activity, and nutrient concentrations in coastal waters, December 2003–April 2006, U.S. Geological Survey 31 (2008)Google Scholar
  70. Knee, K.L., Street, J.H., Grossman, E.E., Boehm, A.B., Paytan, A.: Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, USA). Limnol. Oceanogr. 55, 1105–1122 (2010)Google Scholar
  71. Kohout, F.A.: The flow of fresh water and salt water in the Biscayne Bay Aquifer of the Miami area, Florida. In: Cooper, H.H., Kohout, F.A., Henry, H.R., Glover, R.E.: Sea Water in Coastal Aquifers, 12–32; Washington, D.C. (1964)Google Scholar
  72. Koopmans, D., Berg, P.: An alternative to traditional seepage meters: dye displacement. Water Resour. Res. 47, W01506 (2011)Google Scholar
  73. Köppen, W., Geiger, R.: Klima der Erde, Wall map 1:16 mill, Klett-Perthes, Gotha (1954)Google Scholar
  74. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F.: World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15, 259–263 (2006)Google Scholar
  75. Kroeger, K.D., Charette, M.A.: Nitrogen biogeochemistry of submarine groundwater discharge. Limnol. Oceanogr. 53, 1025–1039 (2008)Google Scholar
  76. Lapointe, B.E., Oconnell, J.: Nutrient-enhanced growth of cladophora-prolifera in Harrington Sound, Bermuda–eutrophication of a confined, phosphorus-limited marine ecosystem. Estuar. Coast Shelf S. 28, 347–360 (1989)Google Scholar
  77. Lee, D.R.: Device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 22, 140–147 (1977)Google Scholar
  78. Lee, J.M., Kim, G.: Estimating submarine discharge of fresh groundwater from a volcanic island using a freshwater budget of the coastal water column. Geophys. Res. Lett. 34 (2007a)Google Scholar
  79. Lee, Y.G., Rahman, M., Kim, G., Han, S.: Mass balance of total mercury and monomethylmercury in coastal embayments of a volcanic island: significance of submarine groundwater discharge. Environ. Sci. Technol. 45, 9891–9900 (2011)Google Scholar
  80. Lee, Y.W., Kim, G.: Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast Shelf S. 71, 309–317 (2007b)Google Scholar
  81. Lewis, J.B.: Measurements of groundwater seepage flux onto a coral-reef–spatial and temporal variations. Limnol. Oceanogr. 32, 1165–1169 (1987)Google Scholar
  82. Lin, I.T., Wang, C.H., You, C.F., Lin, S., Huang, K.F., Chen, Y.G.: Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Mar. Chem. 122, 51–58 (2010)Google Scholar
  83. Louvat, P., Allegre, C.J.: Present denudation rates on the island of Reunion determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim. Cosmochim. Ac. 61, 3645–3669 (1997)Google Scholar
  84. Mallast, U., Siebert, C., Wagner, B., Sauter, M., Gloaguen, R., Geyer, S., Merz, R.: Localisation and temporal variability of groundwater discharge into the Dead Sea using thermal satellite data. Environ. Earth Sci. 69, 587–603 (2013)Google Scholar
  85. Mandelbrot, B.: How long is the coast of britain? Statistical self-similarity and fractional dimension. Science. 156, 636–638 (1967)Google Scholar
  86. Marsh, J.A.: Terrestrial inputs of nitrogen and phosphorus on fringing reefs of Guam. In: Proceedings, Third International Coral Reef Symposium, Miami (1977)Google Scholar
  87. Martin, C.E.A., Galy, A., Hovius, N., Bickle, M., Lin, I.T., Horng, M.J., Calmels, D., Chen, H.E.: The sources and fluxes of dissolved chemistry in a semi-confined, sandy coastal aquifer: the Pingtung Plain, Taiwan. Appl. Geochem. 33, 222–236 (2013)Google Scholar
  88. Masterson, J.P., Garabedian, S.P.: Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water. 45, 209–217 (2007)Google Scholar
  89. Matson, E.A.: Nutrient flux through soils and aquifers to the coastal zone of Guam (Mariana Islands). Limnol. Oceanogr. 38, 361–371 (1993)Google Scholar
  90. Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982)Google Scholar
  91. Mioche, D., Cuet, P.: Carbon, carbonate and nutrient fluxes in summer on a fringing reef subject to anthropogenic pressure (Reunion Island, Indian Ocean). C.R. Acad. Sci. II A 329, 53–59 (1999)Google Scholar
  92. Miyajima, T., Hata, H., Umezawa, Y., Kayanne, H., Koike, I.: Distribution and partitioning of nitrogen and phosphorus in a fringing reef lagoon of Ishigaki Island, northwestern Pacific. Mar. Ecol.-Prog. Ser. 341, 45–57 (2007)Google Scholar
  93. Moore, W.S.: Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature. 380, 612–614 (1996)Google Scholar
  94. Moore, W.S.: The effect of submarine groundwater discharge on the ocean. Annual Rev Marine Sci. 2, 59–88 (2010)Google Scholar
  95. Mwashote, B.M., Burnett, W.C., Chanton, J., Santos, I.R., Dimova, N., Swarzenski, P.W.: Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements. Estuar. Coast Shelf S. 87, 1–10 (2010)Google Scholar
  96. Newman, E.I.: Phosphorus inputs to terrestrial ecosystems. J. Ecol. 83, 713–726 (1995)Google Scholar
  97. Officer, C.B., Ryther, J.H.: The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser. 3, 83–91 (1980)Google Scholar
  98. Oki, D.S., Tribble, G.W., Souza, W.R., Bolke, E.L.: Ground-Water Resources in Kaloko-Honokohau National Historic Park, Island of Hawaii, and Numeric Simulation of the Effects of Ground-Water Withdrawals, US Geological Survey, 58, Honolulu (1999)Google Scholar
  99. Paerl, H.W.: Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 42, 1154–1165 (1997)Google Scholar
  100. Parsons, M.L., Walsh, W.J., Settlemier, C.J., White, D.J., Ballauer, J.M., Ayotte, P.M., Osada, K.M., Carman, B.: A multivariate assessment of the coral ecosystem health of two embayments on the lee of the island of Hawai’i. Mar. Pollut. Bull. 56, 1138–1149 (2008)Google Scholar
  101. Paytan, A., Shellenbarger, G.G., Street, J.H., Gonneea, M.E., Davis, K., Young, M.B., Moore, W.S.: Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51, 343–348 (2006)Google Scholar
  102. Peterson, B.J., Stubler, A.D., Wall, C.C., Gobler, C.J.: Nitrogen-rich groundwater intrusion affects productivity, but not herbivory, of the tropical seagrass Thalassia testudinum. Aquat. Biol. 15, 1–9 (2012)Google Scholar
  103. Peterson, F.L., Hunt, C.D.: Groundwater Resources of Kwajalein Island, Marshall Islands. Technical Memorandum Report No. 63, S 49. Office of Water Research and Technology (1981)Google Scholar
  104. Peterson, R.N., Burnett, W.C., Glenn, C.R., Johnson, A.G.: Quantification of point-source groundwater discharges to the ocean from the shoreline of the big Island, Hawaii. Limnol. Oceanogr. 54, 890–904 (2009)Google Scholar
  105. Planquette, H., Statham, P.J., Fones, G.R., Charette, M.A., Moore, C.M., Salter, I., Nédélec, F.H., Taylor, S.L., French, M., Baker, A.R., Mahowald, N., Jickells, T.D.: Dissolved iron in the vicinity of the crozet islands, southern ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 54, 1999–2019 (2007)Google Scholar
  106. Polemio, M., Pambuku, A., Limoni, P.P., Petrucci, O.: Carbonate coastal aquifer of vlora bay and groundwater submarine discharge (Southwestern Albania). J. Coast. Res. 26–34 (2011)Google Scholar
  107. Povinec, P.P., Burnett, W.C., Beck, A., Bokuniewicz, H., Charette, M., Gonneea, M.E., Groening, M., Ishitobi, T., Kontar, E., Kwong, L.L.W., Marie, D.E.P., Moore, W.S., Oberdorfer, J.A., Peterson, R., Ramessur, R., Rapaglia, J., Stieglitz, T., Top, Z.: Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J. Environ. Radioactiv. 104, 24–45 (2012)Google Scholar
  108. Rad, S.D., Allegre, C.J., Louvat, P.: Hidden erosion on volcanic islands. Earth Planet Sc. Lett. 262, 109–124 (2007)Google Scholar
  109. Ramessur, R., Boodhoo, K., Balgobin, J., Povinec, P., Burnett, W.: Dissolved nutrients from submarine groundwater discharge in flic en flac lagoon, Mauritius. West. Ind. Ocean J. Mar. Sci. 10, 59–71 (2012)Google Scholar
  110. Redding, J.E., Myers-Miller, R.L., Baker, D.M., Fogel, M., Raymundo, L.J., Kim, K.: Link between sewage-derived nitrogen pollution and coral disease severity in Guam. Mar. Pollut. Bull. 73, 57–63 (2013)Google Scholar
  111. Ridgway, N.M., Stanton, B.R.: Some hydrological features of Hawke Bay and nearby shelf waters. New Zeal. J. Mar. Fresh. 3, 545–559 (1969)Google Scholar
  112. Robins, N.S.: A review of small island hydrogeology: progress (and setbacks) during the recent past. Q J Eng Geol Hydroge. 46, 157–165 (2013)Google Scholar
  113. Roxburgh, I.S.: Thermal infrared detection of submarine springs associated with the Plymouth Limestone. Hydrological Sciences Journal. 30, 185–196 (1985)Google Scholar
  114. Santos, I.R., Erler, D., Tait, D., Eyre, B.D.: Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments. J. Geophys. Res.-Oceans 115, 10 (2010)Google Scholar
  115. Santos, I.R., Eyre, B.D., Huettel, M.: The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar. Coast Shelf S. 98, 1–15 (2012)Google Scholar
  116. Schneider, J.C., Kruse, S.E.: A comparison of controls on freshwater lens morphology of small carbonate and siliciclastic islands: examples from barrier islands in Florida, USA. J. Hydrol. 284, 253–269 (2003)Google Scholar
  117. Schopka, H.H., Derry, L.A., Arcilla, C.A.: Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochim. Cosmochim. Ac. 75, 978–1002 (2011)Google Scholar
  118. Schopka, H.H., Derry, L.A.: Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example. Earth Planet Sc. Lett. 339, 67–78 (2012)Google Scholar
  119. Seitzinger, S.P., Harrison, J.A., Dumont, E., Beusen, A.H.W., Bouwman, A.F.: Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycle. 19, 11 (2005)Google Scholar
  120. Sekulic, B., Vertacnik, A.: Balance of average annual fresh water inflow into the adriatic sea. Int. J. Water Resour. D. 12, 89–98 (1996)Google Scholar
  121. Senal, M.I.S., Jacinto, G.S., San Diego-McGlone, M.L., Siringan, F., Zamora, P., Soria, L., Cardenas, M.B., Villanoy, C., Cabrera, O.: Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines. Mar. Pollut. Bull. 63, 195–200 (2011)Google Scholar
  122. Shaish, L., Levy, G., Katzir, G., Rinkevich, B.: Coral Reef Restoration (Bolinao, Philippines) in the Face of Frequent Natural Catastrophes. Restor. Ecol. 18, 285–299 (2010)Google Scholar
  123. Sholkovitz, E., Herbold, C., Charette, M.: An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol. Oceanogr. Meth. 1, 16–28 (2003)Google Scholar
  124. Simmons, G.M., Netherton, J.: Groundwater discharge in a deep coral reef habitat: Evidence for a new biogeochemical cycle? Diving for Science. American Academy of Underwater Sciences (1987)Google Scholar
  125. Simmons, J.A.K., Lyons, W.B.: The Ground-water flux of nitrogen and phosphorus to Bermudas coastal waters. Water Resour. Bull. 30, 983–991 (1994)Google Scholar
  126. Singh, V.S., Gupta, C.P.: Feasibility of groundwater withdrawal in a coral island. Hydrol. Sci. J.-J. Sci. Hydrol. 44, 173–182 (1999)Google Scholar
  127. Slomp, C.P., Van Cappellen, P.: Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295, 64–86 (2004)Google Scholar
  128. Smayda, T.J.: Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli, E., Sundström, B., Edler, L., Anderson, D.M.: Toxic marine phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton held June 26–30 in Lund, Sweden, 29–40; New York (1990)Google Scholar
  129. Smith, V.H.: Eutrophication of freshwater and coastal marine ecosystems–a global problem. Environ. Sci. Pollut R. 10, 126–139 (2003)Google Scholar
  130. Spiteri, C., Slomp, C.P., Tuncay, K., Meile, C.: Modeling biogeochemical processes in subterranean estuaries: effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resour. Res. 44, 18 (2008)Google Scholar
  131. Statham, P.J., Skidmore, M., Tranter, M.: Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Glob. Biogeochem. Cycle. 22, GB3013 (2008)Google Scholar
  132. Stieglitz, T., Rapaglia, J., Bokuniewicz, H.: Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements. J. Geophys. Res.-Oceans. 113, 15 (2008)Google Scholar
  133. Stieglitz, T.C., Cook, P.G., Burnett, W.C.: Inferring coastal processes from regional-scale mapping of (222)Radon and salinity: examples from the Great Barrier Reef, Australia. J. Environ. Radioactiv. 101, 544–552 (2010)Google Scholar
  134. Stieglitz, T.C., Clark, J.F., Hancock, G.J.: The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochim. Cosmochim. Ac. 102, 12–22 (2013)Google Scholar
  135. Street, J.H., Knee, K.L., Grossman, E.E., Paytan, A.: Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar. Chem. 109, 355–376 (2008)Google Scholar
  136. Stüben, D., Sedwick, P., Colantoni, P.: Geochemistry of submarine warm springs in the limestone cavern of Grotta Azzurra, Capo Palinuro, Italy: Evidence for mixing-zone dolomitisation. Chem. Geol. 131, 113–125 (1996)Google Scholar
  137. Su, N., Du, J.Z., Moore, W.S., Liu, S.M., Zhang, J.: An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using Ra-226. Sci. Total Environ. 409, 3909–3918 (2011)Google Scholar
  138. Swartz, J.H.: Resistivity studies of some salt water boundaries in the Hawaiian Islands. Eos T Am. Geophys. Un. 18, 387–393 (1937)Google Scholar
  139. Swarzenski, P.W., Reich, C.D., Spechler, R.M., Kindinger, J.L., Moore, W.S.: Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida. Chem. Geol. 179, 187–202 (2001)Google Scholar
  140. Swarzenski, P.W., Izbicki, J.A.: Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity. Estuar. Coast Shelf S. 83, 77–89 (2009)Google Scholar
  141. Taborosi, D., Jenson, J.W., Mylroie, J.E.: Field Observations of coastal discharge from an uplifted carbonate island aquifer, Northern Guam, Mariana Islands: a descriptive geomorphic and hydrogeologic perspective. J. Coast. Res. 29, 926–943 (2013)Google Scholar
  142. Tait, D.R., Santos, I.R., Erler, D.V., Befus, K.M., Cardenas, M.B., Eyre, B.D.: Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches. Mar. Chem. 156, 49–60 (2013)Google Scholar
  143. Taniguchi, M., Burnett, W.C., Cable, J.E., Turner, J.V.: Investigation of submarine groundwater discharge. Hydrological Processes. 16, 2115–2129 (2002)Google Scholar
  144. Taniguchi, M., Burnett, W.C., Cable, J.E., Turner, J.V.: Assessment methodologies for submarine groundwater discharge. In: Taniguchi, M., Wang, K., Gamo, T.: Land and Marine Hydrogeology, pp. 1–23. Elsevier, Amsterdam (2003a)Google Scholar
  145. Taniguchi, M., Burnett, W.C., Smith, C.F., Paulsen, R.J., O’Rourke, D., Krupa, S.L., Christoff, J.L.: Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry. 66, 35–53 (2003b)Google Scholar
  146. Taniguchi, M., Burnett, W.C., Dulaiova, H., Siringan, F., Foronda, J., Wattayakorn, G., Rungsupa, S., Kontar, E.A., Ishitobi, T.: Groundwater discharge as an important land-sea pathway into Manila Bay, Philippines. J. Coast. Res. 24, 15–24 (2008)Google Scholar
  147. Thompson, G.M., Malpas, J., Smith, I.E.M.: Volcanic geology of Rarotonga, southern Pacific Ocean. New Zeal. J. Geol. Geop. 41, 95–104 (1998)Google Scholar
  148. Tsabaris, C., Scholten, J., Karageorgis, A.P., Comanducci, J.F., Georgopoulos, D., Kwong, L.L., Patiris, D.L., Papathanassiou, E.: Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean Sea. Radiat. Prot. Dosim. 142, 273–281 (2010)Google Scholar
  149. Tsabaris, C., Anagnostou, M.N., Patiris, D.L., Nystuen, J.A., Eleftheriou, G., Dakladas, T., Papadopoulos, V., Prospathopoulos, A., Papadopoulos, A., Anagnostou, E.N.: A marine groundwater spring in Stoupa, Greece: Shallow water instrumentation comparing radon and ambient sound with discharge rate. In: 2nd International Workshop on Research in Shallow Marine and Fresh Water Systems 4, 3–9 (2011)Google Scholar
  150. Turner, J., Hardman, E., Klaus, R., Fagoonee, I., Daby, D., Baghooli, R., Persands, S.: The Reefs of Mauritius. In: Souter, D., Obdura, D., Lindén, O.: Coral Reef Degradation in the Indian Ocean: Status Report 2000, Stockholm (2000)Google Scholar
  151. Umezawa, Y., Miyajima, T., Kayanne, H., Koike, I.: Significance of groundwater nitrogen discharge into coral reefs at Ishigaki Island, southwest of Japan. Coral. Reefs. 21, 346–356 (2002a)Google Scholar
  152. Umezawa, Y., Miyajima, T., Yamamuro, M., Kayanne, H., Koike, I.: Fine-scale mapping of land-derived nitrogen in coral reefs by delta N-15 in macroalgae. Limnol. Oceanogr. 47, 1405–1416 (2002b)Google Scholar
  153. Waska, H., Kim, G.: Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. J. Sea Res. 65, 103–113 (2011)Google Scholar
  154. Wheatcraft, S.W., Buddemeier, R.W.: Atoll-Island Hydrology. Ground Water. 19, 311–320 (1981)Google Scholar
  155. Whitaker, F.F., Smart, P.L.: Active circulation of saline ground waters in carbonate platforms–evidence from the Great-Bahama-Bank. Geology. 18, 200–203 (1990)Google Scholar
  156. Widowati, L.R., De Neve, S., Sukristiyonubowo, Setyorini, D., Kasno, A., Sipahutar, I.A., Sukristiyohastomo: Nitrogen balances and nitrogen use efficiency of intensive vegetable rotations in South East Asian tropical Andisols. Nutr. Cycl. Agroecosys. 91, 131–143 (2011)Google Scholar
  157. Wild, C., Hoegh-Guldberg, O., Naumann, M.S., Colombo-Pallotta, M.F., Ateweberhan, M., Fitt, W.K., Iglesias-Prieto, R., Palmer, C., Bythell, J.C., Ortiz, J.C., Loya, Y., van Woesik, R.: Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 62, 205–215 (2011)Google Scholar
  158. Williams, P.W.: Hydrology of the Walkoropupu Springs: a major tidal karst resurgence in northwest Nelson (New Zealand). J. Hydrol. 35, 73–92 (1977)Google Scholar
  159. Wilson, J., Rocha, C.: Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques. Remote Sens. Environ. 119, 21–34 (2012)Google Scholar
  160. Windom, H.L., Moore, W.S., Niencheski, L.F.H., Jahrike, R.A.: Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem. 102, 252–266 (2006)Google Scholar
  161. Zavialov, P.O., Kao, R.C., Kremenetskiy, V.V., Peresypkin, V.I., Ding, C.F., Hsu, J.T., Kopelevich, O.V., Korotenko, K.A., Wu, Y.S., Chen, P.: Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan. Cont. Shelf Res. 34, 18–25 (2012)Google Scholar
  162. Zektser, I.S., Loaiciga, H.A.: Groundwater fluxes in the global hydrologic-cycle–past, present and future. J. Hydrol. 144, 405–427 (1993)Google Scholar
  163. Zektser, I.S., Everett, L.G.: Groundwater and the Environment: Applications for the Global Community. Lewis Publishers, Boca Raton (2000)Google Scholar
  164. Zhang, J., Mandal, A.K.: Linkages between submarine groundwater systems and the environment. Curr. Opin. Env. Sust. 4, 219–226 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nils Moosdorf
    • 1
    Email author
  • Thomas Stieglitz
    • 2
  • Hannelore Waska
    • 3
  • Hans H. Dürr
    • 4
  • Jens Hartmann
    • 5
  1. 1.Leibniz Center for Tropical Marine Ecology (ZMT)BremenGermany
  2. 2.School of Engineering & Physical Sciences and Centre for Tropical Water and Aquatic Ecosystem ResearchJames Cook UniversityTownsvilleAustralia
  3. 3.Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment (ICBM)University of OldenburgOldenburgGermany
  4. 4.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  5. 5.Institute for Geology, Center for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany

Personalised recommendations