Grundwasser

, Volume 14, Issue 3, pp 219–235 | Cite as

Ein physikalisch basiertes Modellkonzept zur Transportmodellierung in gekoppelten Hydrosystemen

Fachbeitrag

Kurzfassung

Hydrosysteme sind komplexe Systeme, in denen eine Vielzahl von Prozessen gleichzeitig auf unterschiedlichen Raum- und Zeitskalen ablaufen. In diesem Artikel stellen wir ein Kompartimentkonzept zur Simulation von Stoff- und Wärmetransportprozessen in gekoppelten Hydrosystemen vor. Das Konzept beinhaltet die Kopplung von Strömungs- und Transportprozessen über die Grenzflächen der Kompartimente (oder der Prozessdomäne) unter Beibehaltung der rechentechnischen Anforderungen und Optimierungen für die numerische Lösung jedes einzelnen Prozesses. Neu ist auch die Verwendung stochastischer Partikelmethoden (random walk particle tracking – RWPT) zur Analyse von Stofftransport in gekoppelten Hydrosystemen. Wir stellen zunächst kurz die verwendete RWPT-Methode und die maßgeblichen Gleichungen für Strömung, Wärme- und Stofftransport in der gesättigten und der ungesättigten Zone sowie auf der Landoberfläche vor. Fließvorgänge werden durch (z. T. nichtlineare) Diffusionsgleichungen beschrieben (Darcy-Gleichung für Grundwasserströmung, Richards-Gleichung für Strömung in der ungesättigten Zone und diffusive Wellengleichung für Oberflächenabfluss) und über Austauschterme (Flüsse) gekoppelt. Transportprozesse werden durch Advektions-Diffusionsgleichungen beschrieben und advektiv gekoppelt. Wir stellen drei Anwendungsbeispiele für Strömungs-, Stoff- und Wärmetransportvorgänge in gekoppelten Hydrosystemen vor basierend auf Hortonschen und Dunneschen Oberflächenabflüssen sowie hyporheischen Fließvorgängen.

A physically based model concept for transport modelling in coupled hydrosystems

Abstract

Hydrosystems are very complex systems with numerous processes occuring simultaneously at different spatial and temporal scales. In this paper we present the concept of a compartment approach for the analysis of coupled hydrosystems including heat and mass transport. In this concept, flow and transport processes are coupled via their compartment (or process domain) boundaries without giving up the computational necessities and optimisations for the numerical solution of each individual process. In this new approach, random walk particle tracking (RWPT) methods are integrated into the coupled hydrosystem analysis. We briefly introduce the RWPT method and the governing equations for water flow, heat, and mass transport in aquifers, soils and on surfaces. Flow processes are described by diffusion equations (Darcy equation for groundwater flow, Richards equation for flow in the unsaturated zone, and the diffusive wave approximation for overland flow) which are coupled by exchange fluxes. Transport processes are described by advection-diffusion equations and coupled with the exchange fluxes by advection. We present three application examples concerning flow, mass and heat transport in coupled hydrosystems based on Horton- and Dunne overland flow as well as on hyporheic flows.

Keywords

Coupled hydrosystems heat and mass transport random walk particle tracking hyporheic zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbott, M. B., Babovic, V. M., Cunge, J. A.: Towards the hydraulics of the hydroinformatics era.- J. Hydraul. Res 39(4), 339–349 (2001)Google Scholar
  2. Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., Rasmussen, J.: An introduction to the european hydrological system – Systéme Hydrologique Européen, ‚SHE‘, 2: Structure of a physically-based, distributed modelling system.- J. Hydrol. 87(2), 61–77 (1986)CrossRefGoogle Scholar
  3. Abdul, A. S., Gilham, R. W.: Laboratory studies of the effects of the capillary fringe on streamflow generation.- Water Resour. Res. 20(6), 691–698 (1984)CrossRefGoogle Scholar
  4. Abdul, A. S., Gilham, R. W.: Field studies of the effects of the capillary fringe on streamflow generation.- J. Hydrol. 112, 1–18 (1989)CrossRefGoogle Scholar
  5. Akan, A. O., Yen, B. C.: Mathematical model of shallow water flow over porous media.- J. Hydr. Div. ASCE 107(4), 479–494 (1981)Google Scholar
  6. Anderson, M. G., Burt, P. T.: Hydrological forecasting; Wiley Publisher, Berlin (1985)Google Scholar
  7. Arnold, J. G., Sirinivasan, R., Muttiah, R. S., Williams, J. R.: Large area hydrologic modeling and assessment, part 1 – model development.- J. Am. Water Resour. Assoc. 34(1), 73–89 (1998)CrossRefGoogle Scholar
  8. Bear, J.: Dynamics of fluids in porous media.- Dover Publications Inc. New York, 2. Aufl. (1988)Google Scholar
  9. Bertoldi, G., Tamanini, D., Zanotti, F., Rigon, R.: GEOtop, A hydrological balance model, technical description and programs guide (Version 0.875). Department of Civil and Environmental Engineering, University of Trento (2004)Google Scholar
  10. Bhallamudi, S. M., Panday, S., Huyakorn, P. S.: Sub-timing in fluid flow and transport simulations.- Adv. Water Resour. 26(5), 477–489 (2003)CrossRefGoogle Scholar
  11. Brunke, M., Gonser, T.: The ecological significance of exchange processes between rivers and groundwater.- Freshwater Biol. 37, 1–33 (1997)CrossRefGoogle Scholar
  12. Cardenas, M. B., Wilson, J. L.: Effects of current-bed form induced fluid flow on the thermal regime of sediments.- Water Resour. Res. 43, W08431, doi:10.1029/2006WR005343 (2007)Google Scholar
  13. Chen, Q., Morales-Chaves, Y., Li, H., Mynett, A.: Hydroinformatics techniques in eco-environmental modelling and management.- J. Hydroinf. 8(4), 297–316 (2006)CrossRefGoogle Scholar
  14. Constantz, J., Stonestrom, D.: Heat as a tracer of water movement near streams.- In: Stonestrom, D., Constantz, J. (Hrsg.): Heat as a tool for studying the movement of ground water near streams.- USGS Survey Circular 1260 (2003)Google Scholar
  15. Darcy, H. P. G.: Les fontaines publiques de la ville de Dijon; Victor Dalmont, Paris (1856)Google Scholar
  16. Dawson, C.: Analysis of discontinuous finite element methods for groundwater/surface water coupling.- SIAM J. Num. Anal. 52, 63–88 (2006)Google Scholar
  17. Delay, F., Ackerer, P., Danquigny, C.: Simulating solute transport in porous or fractured formations using random walk particle tracking: a review.- Vadose Zone J. 4(2), 360–379 (2005)CrossRefGoogle Scholar
  18. Delfs, J.-O., Park, C.-H., Kolditz, O.: A sensitivity analysis of Hortonian flow.- Adv. Water Resour., doi:10.1016/j.advwatres.2009.06.005 (2009, in Druck)
  19. Delfs, J.-O., Park, C.-H., Kolditz, O.: Benchmarking of flow and transport in coupled surface/subsurface hydrosystems. Helmholtz Zentrum für Umweltforschung – UFZ; Leipzig (2008)Google Scholar
  20. Donigian, A. S., Imhoff, J.: History and evolution of watershed modelling derived from the Stanford Watershed Model. CRC Press, Boca Raton.- In: Singh, V. P., Frevert, D. (Hrsg.): Watershed Models (2006)Google Scholar
  21. Du, Y., Kolditz, O.: Time discretization for Richards flow modelling.- Tech. Rep. 2005-50; Center of Applied Geoscience, University of Tübingen, GeoSys-Preprint (2005)Google Scholar
  22. Forsyth, P. A., Wu, Y. S., Pruess, K.: Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media.- Adv. Water Resour. 18, 25–38 (1995)CrossRefGoogle Scholar
  23. Freeze, R. A., Harlan, R. L.: Blueprint for a physically based, digitally-simulated hydrological response model.- J. Hydrol. 9, 237–258 (1969)CrossRefGoogle Scholar
  24. Gerbeau, J.-F., Perthame, B.: Derivation of viscous Saint Venant system for laminar shallow water: Numerical validation.- Discrete Contin. Dyn. Syst. Ser. B 1(1), 89–102 (2001)Google Scholar
  25. Govindaraju, R. S.: Modeling overland flow contamination by chemicals mixed in shallow soil horizons under variable source area hydrology.- Water Resour. Res. 32(3), 753–758 (1996)CrossRefGoogle Scholar
  26. Govindaraju, R. S., Kavvas, M. L.: Dynamics of moving boundary overland flows over infiltrating surfaces at hillslopes.- Water Resour. Res. 27(8), 1885–1898 (1991)CrossRefGoogle Scholar
  27. Green, W. A., Ampt, G. A.: Studies on soil physics I. The flow of air and water through soils.- J. of Agr. Sci. 4, 1–24 (1911)CrossRefGoogle Scholar
  28. Gunduz, O., Aral, M. M., 2005. River networks and groundwater flow: simultaneous solution of a coupled system.- J. Hydrol. 301(1–4), 216–234 (2005)Google Scholar
  29. Harbaugh, A. W., Banta, E. R., Hill, M. C., McDonald, M. G.: MODFLOW-2000, the U. S. geological survey modular ground-water model – user guide to modularization concepts and the groundwater flow process.- Tech. Rep. 00-92, U. S. Geological Survey, Open-File Report (2000)Google Scholar
  30. Hoteit, H., Mose, R., Younes, A., Lehmann, F., Ackerer, P.: Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods.- Math. Geol. 34(4), 435–456 (2002)CrossRefGoogle Scholar
  31. Huyakorn, P., Pinder, G.: Computational methods in subsurface flow; Academic Press, New York (1983)Google Scholar
  32. Ibisch, R. B., Borchardt, D., Seydell, I.: Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany).- Fundam. Appl. Limnol. (2009, im Druck)Google Scholar
  33. Julien, P. Y.: River mechanics.- Cambridge University Press; Cambridge (2002)Google Scholar
  34. Kalbus, E., Reinstorf, F., Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review.- Hydrol. Earth Syst. Sci. 10(6), 873–887 (2006)Google Scholar
  35. Kinzelbach, W.: Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser; Oldenburg Verlag, München und Wien (1987)Google Scholar
  36. Kolditz, O., Bauer, S.: A process-orientated approach to compute multi-field problems in porous media.- International J. Hydroinf. 6, 225–244 (2004)Google Scholar
  37. Kolditz, O., Delfs, J.-O., Bürger, C., Beinhorn, M., Park, C.-H.: Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach.- J. Hydroinf. 10(3), 227–244 (2008)CrossRefGoogle Scholar
  38. Kolditz, O., Shao, H. (Hrsg.): OpenTHMC – Developer Benchmark Book based on GeoSys/RockFlow Version 4. 9. 06. Report 15, Helmholtz Centre for Environmental Reserach – UFZ Leipzig (2009)Google Scholar
  39. Kollet, S. J., Maxwell, R. M.: Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model.- Adv. Water Resour. 29(7), 945–958 (2006)CrossRefGoogle Scholar
  40. Lees, M.: Data-based mechanistic modelling and forecasting of hydrological systems.- J. Hydroinf. 2(1), 15–34 (2000)Google Scholar
  41. LeVeque, R. J.: Finite volume methods for hyperbolic problems; Cambridge University Press, Cambridge (2002)Google Scholar
  42. Li, Q., Unger, A., Sudicky, E.: Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model.- J. Hydrol. 357(3–4), 317–336 (2008)Google Scholar
  43. Manning, R.: On the flow of water in open channels and pipes.- Trans. Inst. Civil Eng. Ireland 20, 161–207 (1891)Google Scholar
  44. Morita, M., Yen, B. C.: Modeling of conjunctive two-dimensional surface-three-dimensional subsurface flows.- J. Hydraul. Eng. 128(2), 184–200 (2002)CrossRefGoogle Scholar
  45. Park, C.-H., Beyer, C., Bauer, S., Kolditz, O.: A study of preferential flow in heterogeneous media using random walk particle tracking.- Geosci. J. 12(3), 285–297 (2008a)CrossRefGoogle Scholar
  46. Park, C.-H., Beyer, C., Bauer, S., Kolditz, O.: Using global node-based velocity in random walk particle tracking in variably saturated porous media: Application to contaminant leaching from road constructions.- Environ. Geol. 55, 1755–1766 (2008b)CrossRefGoogle Scholar
  47. Park, Y., Sudicky, E., Panday, S.: Application of implicit sub-time stepping to simulate flow and transport in fractured porous media.- Adv. Water Resour. 31(7), 995–1003 (2008c)CrossRefGoogle Scholar
  48. Philip, J. R.: The theory of infiltration: 3. Moisture profiles and relation to experiment.- Soil Sci. 83, 163–178 (1957)CrossRefGoogle Scholar
  49. Ponce, V. M., Ruh-Ming, L., Simmons, D. B.: Applicability of kinematic and diffusion models.- J. Hydr. Div. ASCE 104, 353–360 (1978)Google Scholar
  50. Richards, C. P., Parr, A. D.: Modified Fickian model for solute uptake by runoff.- J. Env. Engrg. 114(4), 792–809 (1988)CrossRefGoogle Scholar
  51. Richards, L. A.: Capillary conduction of liquids through porous mediums.- Phys. 1, 318–333 (1931)CrossRefGoogle Scholar
  52. Sänger, N., Zanke, U. C.: A depth – oriented view of hydraulic exchange patterns between surface water and the hyporheic zone: analysis of field experiments at the River Lahn, Germany.- Arch. Hydrobiol. (2009, in Druck)Google Scholar
  53. Samaniego, L., Bárdossy, A.: Exploratory modelling applied to integrated water resources management. Proceedings 3rd International Symposium on Integrated Water Resources Management, Bochum, September 2006.- IAHS Publ. 317 (2007)Google Scholar
  54. Simunek, J., Sejna, M., Genuchten, M. T. v.: The Hydrus-2D software package for simulating two-dimensional movement of water, head and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-53. International GroundWater Modeling Center, Colorado School of Mines, Golden, Colorado (1999)Google Scholar
  55. Singh, V., Bhallamudi, S. M.: Conjunctive surface-subsurface modeling of overland flow.- Adv. Water Resour. 21(7), 567–579 (1998)CrossRefGoogle Scholar
  56. Singh, V. P.: Derivation of errors of kinematic-wave and diffusion-wave approximations for space-independent flows.- Water Resour. Manage. 8, 57–82 (1994)CrossRefGoogle Scholar
  57. Singh, V. P., Frevert, D. K. (Hrsg.): Watershed Models; CRC, USA (2005)Google Scholar
  58. Smith, R. E., Woolhiser, D. A.: Overland flow on an infiltrating surface.- Water Resour. Res. 7(4), 899–913 (1971)CrossRefGoogle Scholar
  59. Sudicky, E., Jones, J., Park, Y.: Simulating complex flow and transport dynamics in an integrated surface-subsurface modeling framework.- Geosci. J. 12(2), 107–122 (2008)CrossRefGoogle Scholar
  60. Sudicky, E. A., Jones, J. P., McLaren, R. G., Brunner, D. S., VanderKwaak, J. E.: A fully-coupled model of surface and subsurface water flow: Model overview and application to the Laurel Creek watershed.- In: Balkema, A. A. (Hrsg.): Computational methods in water resources Nr. 2, 1093–1099 (2000)Google Scholar
  61. Teutsch, G.: Grundwassermodelle im Karst: Praktische Ansätze am Beispiel zweier Einzugsgebiete im Tiefen und Seichten Malmkarst der Schwäbischen Alb. Dissertation, Zentrum für Angewandte Geowissenschaften, Universität Tübingen (1988)Google Scholar
  62. Therrien, R., McLaren, R. G., Sudicky, E. A., Panday, S.: HydroSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport; Université Laval and University of Waterloo (2004)Google Scholar
  63. Thoms, R. B.: Simulating fully coupled overland and variably saturated subsurface flow using MODFLOW. Magisterarbeit, OGI School for Science and Engineering, Oregon Health & Science University, Beaverton, USA (2003)Google Scholar
  64. van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soil.- Soil Sci. Soc. of Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  65. VanderKwaak, J. E.: Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. Dissertation, Department of Earth Sciences, University of Waterloo, Ontario, Canada (1999)Google Scholar
  66. Vreugdenhil, C. B.: Numerical Methods for Shallow-Water Flow. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  67. Wallach, R., van Genuchten, T., Spencer, W.: Modelling solute transfer from soil to surface runoff: The concept of effective depth of transfer.- J. Hydrol. 109, 307–317 (1989)CrossRefGoogle Scholar
  68. Wang, W., Kolditz, O.: Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media.- Int. J. Numer. Methods Eng. 69(1), 162–201 (2007)CrossRefGoogle Scholar
  69. Warrick, J. W., 2003.- Soil water dynamics. Oxford University Press Inc., New York.Google Scholar
  70. Wasy Software: IFMMIKE11 1.1, User manual; Wasy GmbH, Institute for Water Resources Planning and System Research (2004)Google Scholar
  71. Watanabe, N.: Mesh design for finite element analysis of geo-hydrological systems. Magisterarbeit, Graduate School of Environmental science, Okayama University, Japan (2008)Google Scholar
  72. Weisbach, J.: Lehrbuch der Ingenieur- und Maschinen-Mechanik.- Water & Power Press, Braunschweig (1845)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J.-O. Delfs
    • 1
  • C.-H. Park
    • 1
  • O. Kolditz
    • 1
  • E. Kalbus
    • 2
  1. 1.Department UmweltinformatikHelmholtz-Zentrum für Umweltforschung – UFZ LeipzigLeipzigDeutschland
  2. 2.Department HydrogeologieHelmholtz-Zentrum für Umweltforschung – UFZ LeipzigLeipzigDeutschland

Personalised recommendations