Grundwasser

, Volume 14, Issue 3, pp 207–217 | Cite as

Raumzeitmuster des See-Grundwasser-Austausches in einem sauren Tagebaurestsee

  • J. H. Fleckenstein
  • C. Neumann
  • N. Volze
  • J. Beer
Fachbeitrag

Kurzfassung

Die Wasserqualität von Restseen des Braunkohletagebaus wird stark durch den Zustrom von Grundwasser aus dem Bereich der Abraumkippen geprägt. Dabei kann die Höhe der Zustromrate die Freisetzung von Azidität an der See-Grundwasser-Grenzfläche maßgeblich steuern. Eine robuste Quantifizierung von Austauschraten zwischen See- und Grundwasser ist daher von großer Bedeutung für eine Prognose der chemischen Entwicklung derartiger Seen.

Die räumlichen und zeitlichen Muster des See-Grundwasser-Austausches in einem sauren Restsee des Braunkohletagebaus in der Niederlausitz wurden anhand von Flusskammermessungen an 16 Standorten untersucht. Zur Absicherung der Flusskammermessungen wurden an einzelnen Standorten zusätzlich Austauschraten aus vertikalen hydraulischen Gradienten und Leitfähigkeiten sowie durch inverse Simulation vertikaler Chloridprofile bestimmt. Die Ergebnisse der verschiedenen Methoden sind sehr gut vergleichbar und zeigen eine starke räumliche und zeitliche Variabilität des Austausches. Das generelle Muster des Austausches ist im Gegensatz zu früheren Untersuchungen (Knoll et al. 1999) rezent durch Grundwasserzustrom im Norden und Abstrom von Seewasser im Süden gekennzeichnet. Gemessene Austauschraten lagen zwischen –1,7 l m–2 d–1 (Abstrom) und > 200 l m–2 d–1 (Zustrom). Die höchsten Grundwasserzustromraten wurden an lokalen Hotspots in den tieferen Bereichen des Sees festgestellt und sind vermutlich auf lokale hydraulische Verbindungen mit einem tieferen, tertiären Grundwasserleiter zurückzuführen. Das generelle räumliche Muster ist vor allem durch das regionale Grundwasserströmungsfeld bedingt. Zeitliche Variabilität ergibt sich aus der Instationarität der hydrologischen Randbedingungen (See- und Grundwasserstände), die sich jedoch infolge sehr unterschiedlicher hydraulischer Ankopplung des Sees an ein komplexes, heterogenes Grundwassersystem lokal unterschiedlich stark auf die See-Grundwasser-Austauschraten auswirkt.

Spatio-temporal patterns of lake-groundwater exchange in an acid mine lake

Abstract

Water quality of acid mine lakes is strongly affected by groundwater inflow from the mine tailings. The rate of inflow can be an important control on the release of acidity at the lake-groundwater interface. A robust quantification of exchange fluxes is therefore of paramount importance for the chemical evolution of the lakes. The spatial and temporal patterns of lake-groundwater exchange in an acid mine lake from open pit lignite mining in Lower Lusatia, Eastern Germany were investigated using seepage meter measurements at 16 locations. To validate exchange rates from the seepage meters, additional flux estimates were obtained from hydraulic gradients, hydraulic conductivities and vertical chloride profiles. The different methods compared well and revealed strong spatial and temporal variability of exchange. In contrast to previous studies (Knoll et al. 1999), the general pattern of exchange is currently characterized by groundwater inflow at the north end of the lake and outflow of lake water to the aquifer in the south. Exchange rates ranged from –1.7 l m–2 d–1 (outflow) to > 200 l m–2 d–1 (inflow). The highest rates of inflow were observed at local hot spots in the deeper part of the lake and are explained by local hydraulic connections with the underlying Tertiary aquifer. The general spatial pattern is controlled by the regional groundwater flow field. Temporal patterns are the result of transients in the hydrologic boundary conditions (lake and groundwater levels), which, depending on the connectivity between the lake and parts of the aquifer-system, affect exchange fluxes to different degrees.

Keywords

groundwater-lake interactions seepage meters chloride profiles seepage heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Appelo, C. A. J., Postma, D.: Geochemistry, groundwater and pollution.- 649 S.; Leiden (2005)Google Scholar
  2. Belanger, T. V., Mikutel, D. F.: On the use of seepage meters to estimate groundwater nutrient loading to lakes.- Water Resources Bulletin 21, 265–273 (1985)Google Scholar
  3. Belanger, T. V., Montgomery, M. T.: Seepage meter errors.- Limnology and Oceanography 37, 1787–1795 (1992)Google Scholar
  4. Bigham, J. M., Schwertmann, U., Traina S. J., Winland, R. L., Wolf M.: Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage.- Applied Geochemistry 11(6), 845–849 (1996)CrossRefGoogle Scholar
  5. Blodau, C.: Groundwater inflow controls acidity fluxes in an iron rich and acidic lake.- Acta Hydrochimica Et Hydrobiologica 33, 104–117 (2005)CrossRefGoogle Scholar
  6. Blodau, C.: A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.- Science of the Total Environment 369, 307–332 (2006)CrossRefGoogle Scholar
  7. Blodau, C., Knorr, K. H.: Experimental inflow of groundwater induces a „biogeochemical regime shift” in iron-rich and acidic sediments.- Journal of Geophysical Research-Biogeosciences 111, G02026 (1–12) (2006)Google Scholar
  8. Boyle, D. R.: Design of a seepage meter for measuring groundwater fluxes in the nonlittoral zones of lakes – Evaluation in a boreal forest lake.- Limnology and Oceanography 39, 670–681 (1994)Google Scholar
  9. Brock, T. D., Lee, D. R., Janes, D., Winek, D.: Groundwater seepage as a nutrient source to a drainage lake – Lake Mendota, Wisconsin.- Water Research 16, 1255–1263 (1982)CrossRefGoogle Scholar
  10. Brunke, M., Gonser, T.: The ecological significance of exchange processes between rivers and groundwater.- Freshwater Biology 37, 1–33 (1997)CrossRefGoogle Scholar
  11. Cherkauer, D. A., McBride, J. M.: A remotely operated seepage meter for use in large lakes and rivers.- Ground Water 26, 165–171 (1988)CrossRefGoogle Scholar
  12. Conant, B., Cherry, J. A., Gillham, R. W.: A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.- Journal of Contaminant Hydrology 73(1–4), 249–279 (2004)Google Scholar
  13. Cullmann, J., Junk, W. J., Weber, G., Schmitz, G. H.: The impact of seepage influx on cation content of a Central Amazonian floodplain lake.- Journal of Hydrology 328, 297–305 (2006)CrossRefGoogle Scholar
  14. Fleckenstein, J. H., Niswonger, R. G., Fogg, G. E.: River-aquifer interactions, geologic heterogeneity, and low-flow management.- Ground Water 44, 837–852 (2006)CrossRefGoogle Scholar
  15. Gelhar, L. W., Welty, C., Rehfeldt, K. R.: A critical-review of data on field-scale dispersion in aquifers.- Water Resources Research 28(7), 1955–1974 (1992)CrossRefGoogle Scholar
  16. Healy, R. W., Ronan, A. D.: Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media – modification of the U. S. Geological Survey’s computer program VS2DT, U. S.- Geological Survey Water-Resources Investigations Report 96-4230.- 36 S. (1996)Google Scholar
  17. Hofmann, H., Knöller, K., Lessmann, D.: Mining lakes as groundwater-dominated hydrological systems: assessment of the water balance of Mininig Lake Plessa 117 (Lusatia, Germany) using stable isotopes.- Hydrological Processes 22, 4620–4627 (2008)CrossRefGoogle Scholar
  18. Hoth, N., Feldmann, H., Rinker, A., Glombitza, F., Häfner, F.: Reductive processes within lignite dumps-chance of a long-term natural attenuation process.- Geoderma 129(1–2), 19–31 (2005)Google Scholar
  19. Hvorslev, M. J.: Time lag and soil permeability in ground-water observations.- U. S. Army Corp of Engineers.- Waterways Exper. Stat. Bulletin 36, 50 (1951)Google Scholar
  20. Kalbus, E., Schmidt, C., Molson, J. W., Reinstorf, F., Schirmer, M.: Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge.- Hydrol. Earth Syst. Sci. 13, 69–77 (2009)CrossRefGoogle Scholar
  21. Kishel, H. F., Gerla, P. J.: Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA.- Hydrological Processes 16, 1921–1934 (2002)CrossRefGoogle Scholar
  22. Knoll, D.: Grundwasseranbindung von alten Tagebau-Restseen im Niederlausitzer Braunkohletagebaugebiet. Unveröffentlichte Diplomarbeit, Universität Heidelberg, Institut für Umweltphysik.- 95 S. (1998)Google Scholar
  23. Knoll, D., Weber, L., Schäfer, W.: Grundwasseranbindung von alten Tagebaurestseen im Niederlausitzer Braunkohletagebaugebiet.- Grundwasser 4(2), 55–61 (1999)CrossRefGoogle Scholar
  24. Knöller, K., Fauville, A., Mayer, B., Strauch, G., Friese, K., Veizer, J.: Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany.- Chemical Geology 204, 303–323 (2004)CrossRefGoogle Scholar
  25. Knorr, K. H., Blodau, C.: Experimentally altered groundwater inflow remobilizes acidity from sediments of an iron rich and acidic lake.- Environmental Science & Technology 40, 2944–2950 (2006) CrossRefGoogle Scholar
  26. Krause, S., Heathwaite, A. L., Binley, A. M., Keenan, P. O.: Nitrate concentration changes at the groundwater – surface water interface of a small Cumbrian river.- Hydrological Processes (im Druck)Google Scholar
  27. LaBaugh, J. W., Winter, T. C., Swanson, G. A., Rosenberry, D. O., Nelson, R. D., Euliss, N. H.: Changes in atmospheric circulation patterns affect midcontinent wetlands sensitive to climate.- Limnology and Oceanography 41, 864–870 (1996)CrossRefGoogle Scholar
  28. Lausitzer Bergbau Verwaltungsgesellschaft mbH (LBV): Technische Dokumentation – Restloch 77; Senftenberg (1995)Google Scholar
  29. Lee, D. R.: Device for Measuring seepage flux in lakes and estuaries.- Limnology and Oceanography 22, 140–147 (1977)CrossRefGoogle Scholar
  30. Lerman, A., Jones, B. F.: Transient and steady-state salt transport between sediments and brine in closed lakes.- Limnology and Oceanography 18, 72–85 (1973)CrossRefGoogle Scholar
  31. Lerman, A.: Geochemical processes: Water and sediment environments.- 481 S.; New York (1979)Google Scholar
  32. Murdoch, L. C., Kelly, S. E.: Factors affecting the performance of conventional seepage meters.- Water Resources Research 39 (2003)Google Scholar
  33. Nowel, W., Bönisch, R., Schneider, W., Schulze, H.: Geologie des Lausitzer Braunkohlereviers.- 102 S.; Senftenberg (1994)Google Scholar
  34. Paulsen, R. J., Smith, C. F., O‘Rourke, D., Wong, T. F.: Development and evaluation of an ultrasonic ground water seepage meter.- Ground Water 39, 904–911 (2001)CrossRefGoogle Scholar
  35. Peine, A., Tritschler, A., Küsel, K., Peiffer, S.: Electron flow in an iron-rich acidic sediment – evidence for an acidity-driven iron cycle.- Limnology and Oceanography 45, 1077–1087 (2000)Google Scholar
  36. Rosenberry, D. O.: A seepage meter designed for use in flowing water.- Journal of Hydrology 359, 118–130 (2008)CrossRefGoogle Scholar
  37. Rosenberry, D. O., Morin, R. H.: Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage.- Ground Water 42, 68–77 (2004)CrossRefGoogle Scholar
  38. Roy, J. W., Hayashi, M.: Groundwater exchange with two small alpine lakes in the Canadian Rockies.- Hydrological Processes 22, 2838–2846 (2008)CrossRefGoogle Scholar
  39. Schafran, G. C., Driscoll, C. T.: Flow path composition relationships for groundwater entering an acidic lake.- Water Resources Research 29, 145–154 (1993)CrossRefGoogle Scholar
  40. Schneider, R. L., Negley, T. L., Wafer, C.: Factors influencing groundwater seepage in a large, mesotrophic lake in New York.- Journal of Hydrology 310, 1–16 (2005)CrossRefGoogle Scholar
  41. Schuster, P. F., Reddy, M. M., LaBaugh, J. W., Parkhurst, R. S., Rosenberry, D. O., Winter, T. C., Antweiler, R. C., Dean, W. E.: Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota.- Hydrological Processes 17, 823–838 (2003)CrossRefGoogle Scholar
  42. Sebestyen, S. D., Schneider, R. L.: Dynamic temporal patterns of nearshore seepage flux in a headwater Adirondack lake.- Journal of Hydrology 247, 137–150 (2001)CrossRefGoogle Scholar
  43. Simpkins, W. W.: A multiscale investigation of ground water flow at Clear Lake, Iowa.- Ground Water 44, 35–46 (2006)CrossRefGoogle Scholar
  44. Sophocleous, M.: Interactions between groundwater and surface water: the state of the science.- Hydrogeology Journal 10, 52–67 (2002)CrossRefGoogle Scholar
  45. Taniguchi, M., Fukuo, Y.: Continuous measurements of groundwater seepage using an automatic seepage meter.- Ground Water 31, 675–679 (1993)CrossRefGoogle Scholar
  46. Werner, F., Bilek, F., Luckner, L.: Impact of regional groundwater flow on the water quality of an old post-mining lake.- Ecological Engineering 17, 133–142 (2001)CrossRefGoogle Scholar
  47. Winter, T. C.: The interaction of lakes with variably saturated porous-media.- Water Resources Research 19, 1203–1218 (1983)CrossRefGoogle Scholar
  48. Winter, T. C.: Relation of streams, lakes, and wetlands to groundwater flow systems.- Hydrogeology Journal 7, 28–45 (1999)CrossRefGoogle Scholar
  49. Winter, T. C., Harvey, J. W., Franke, O. L., Alley, W. M.: Ground water and surface water, a single resource, USGS Circular 1139, U. S.- Geological Survey.- 79 S.; Denver (1999)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. H. Fleckenstein
    • 1
  • C. Neumann
    • 1
  • N. Volze
    • 1
  • J. Beer
    • 1
  1. 1.Lehrstuhl für HydrologieUniversität BayreuthBayreuthDeutschland

Personalised recommendations