Advertisement

Der Onkologe

, Volume 25, Issue 4, pp 304–314 | Cite as

Active Surveillance und die moderne Diagnostik des Prostatatkarzinoms

Multiparametrische MRT, Fusionsbiopsien und neue genetische Biomarker
  • Sami-Ramzi Leyh-BannurahEmail author
  • Hannes Cash
  • Angelika Borkowetz
  • Markus Graefen
  • Thorsten Schlomm
  • Boris Hadaschik
  • Lars Budäus
Leitthema
  • 191 Downloads

Zusammenfassung

Hintergrund

Ein Teil der Prostatakarzinome wird in der primären Prostatabiopsie nicht detektiert, sodass bei weiterbestehendem Verdacht eine erneute Biopsie erfolgen muss. Neben der Problematik der Falsch-negativ-Rate in der systematischen Biopsie, besteht eine hohe Missklassifikationsrate, insbesondere das Tumorgrading betreffend. Dadurch kann es zu einer verspäteten Diagnose aggressiverer Tumoreigenschaften und im ungünstigsten Falle zu einem Versäumnis kurativer Ansätze kommen. Aufgrund dieser Problematik bestehen zahlreiche Ansätze, die Therapieentscheidung und Überwachung durch den Einsatz moderner Bildgebung und genetischer Biomarker zu optimieren

Ziel

Der Beitrag vermittelt eine Übersicht über die Active-Surveillance(AS)-Definitionen, die Problematik der Prostatakarzinomdetektion und genaue Grading-Abschätzung in der systematischen transrektalen Biopsie und den Einsatz der multiparametrischen MRT (mpMRT), der gezielten MRT- Fusionsbiopsie und genetischer Biomarker als potenzielle Lösungsansätze sowie deren Integration im klinischen Alltag.

Material und Methoden

Aktuelle Literatur wurde recherchiert und im Kontext mit eigenen Erfahrungen ausgewertet.

Ergebnisse

Die mpMRT sowie die gezielte MRT-Fusionsbiopsie sind dem aktuellen Standard der systematischen Biopsie in der Detektion des klinisch signifikanten Prostatakarzinoms überlegen. Besonders deutlich zeigt sich dies im Falle der Wiederholungsbiopsie des anterioren Prostatakarzinoms, einer persistierend suspekten PSA-Dynamik und Einschluss und Monitoring von AS-Patienten. Auch die Kombination mit weiteren neuartigen Prädiktoren sind weitere vielversprechende Ansätze.

Schlussfolgerung

Der potenzielle diagnostische Mehrwert kann ausschließlich durch eine interdisziplinäre Verknüpfung der zunehmend komplexeren diagnostischen Schritte erreicht werden. Effektive Lösungen im Rahmen der interdisziplinären Zusammenarbeit von Radiologen und Urologen auf Niveau der Fachgesellschaften sind notwendig, um Fragen bezüglich des Zeitaufwands und der Ressourcenverteilung mit den Leistungserstattern zu adressieren.

Schlüsselwörter

PRECISION Biparametrisches MRT Evasives Prostatakarzinom-Syndrom Wiederholungsbiopsie Active-Surveillance-Monitoring 

Active surveillance and modern diagnostics of prostate cancer

Multiparametric MRI, fusion-targeted biopsy and new genetic biomarkers

Abstract

Background

Primary transrectal ultrasound random biopsies do not detect all prostate cancer foci, leading to the necessity of repeat biopsies if prostate cancer suspicion persists. Moreover, corresponding false negative rates and discrepancies between biopsy Gleason scores and final radical prostatectomy pathology must be considered. These challenges potentially lead to delayed diagnosis and enable prostate cancer to gain aggressive tumor features and can be a common reason for understaging, adverse patient outcomes or missing the window of opportunity for a cure. Multiparametric magnetic resonance imaging (mpMRI) and genetic biomarkers might represent solutions to further improve prostate cancer detection and characterization in order to optimize treatment choice, such as active surveillance inclusion and monitoring.

Objective

This article provides an overview of active surveillance definitions, pitfalls of prostate cancer detection and characterization, implementation of mpMRI, MRI fusion targeted biopsy and genetic biomarkers as possible solutions and the integration into daily clinical practice.

Material and methods

Review of the current literature and institutional experiences.

Results

The mpMRI and MRI fusion targeted biopsy are superior to the current standard of transrectal ultrasound random biopsy in the detection of clinically significant prostate cancer. This is particularly shown in the setting of previous negative biopsy, anterior prostate cancer, persistence of suspicious PSA dynamics and active surveillance inclusion and monitoring. Similarly, the combination of other novel predictors represent promising approaches.

Conclusion

The potential diagnostic value can only be achieved by an interdisciplinary combination of increasingly complex diagnostic steps. Effective solutions within the framework of interdisciplinary cooperation between radiologists and urologists at the level of the specialist societies are necessary in order to address questions regarding time expenditure and resource distribution with service providers.

Keywords

PRECISION Biparametric MRI Evasive prostate cancer syndrome Repeat biopsy Active surveillance monitoring 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S.-R. Leyh-Bannurah, H. Cash, A. Borkowetz, M. Graefen, T. Schlomm, B. Hadaschik und L. Budäus geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ferlay JSI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. https://gco.iarc.fr/. Zugegriffen: 22. Febr. 2016Google Scholar
  2. 2.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403PubMedCrossRefGoogle Scholar
  3. 3.
    Deutsche Krebsgesellschaft DK, AWMF. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2018) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms, Langversion 5.0, 2018 , AWMF Registernummer: 043/022OL. http://www.leitlinienprogramm-onkologie.de/leitlinien/prostatakarzinom/. Zugegriffen: 3. Aug. 2018Google Scholar
  4. 4.
    Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA (2016) The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 40(2):244–252PubMedGoogle Scholar
  5. 5.
    Pompe RS, Davis-Bondarenko H, Zaffuto E, Tian Z, Shariat SF, Leyh-Bannurah SR et al (2017) Population-based validation of the 2014 ISUP Gleason grade groups in patients treated with radical prostatectomy, brachytherapy, external beam radiation, or no local treatment. Prostate 77(6):686–693PubMedCrossRefGoogle Scholar
  6. 6.
    Holm HH, Gammelgaard J (1981) Ultrasonically guided precise needle placement in the prostate and the seminal vesicles. J Urol 125(3):385–387PubMedCrossRefGoogle Scholar
  7. 7.
    Smeenge M, de la Rosette JJ, Wijkstra H (2012) Current status of transrectal ultrasound techniques in prostate cancer. Curr Opin Urol 22(4):297–302PubMedCrossRefGoogle Scholar
  8. 8.
    Brock M, von Bodman C, Sommerer F, Loppenberg B, Klein T, Deix T et al (2011) Comparison of real-time elastography with grey-scale ultrasonography for detection of organ-confined prostate cancer and extra capsular extension: a prospective analysis using whole mount sections after radical prostatectomy. BJU Int 108(8 Pt 2):E217–E222PubMedCrossRefGoogle Scholar
  9. 9.
    Mitterberger MJ, Aigner F, Horninger W, Ulmer H, Cavuto S, Halpern EJ et al (2010) Comparative efficiency of contrast-enhanced colour Doppler ultrasound targeted versus systematic biopsy for prostate cancer detection. Eur Radiol 20(12):2791–2796PubMedCrossRefGoogle Scholar
  10. 10.
    Taverna G, Morandi G, Seveso M, Giusti G, Benetti A, Colombo P et al (2011) Colour Doppler and microbubble contrast agent ultrasonography do not improve cancer detection rate in transrectal systematic prostate biopsy sampling. BJU Int 108(11):1723–1727PubMedCrossRefGoogle Scholar
  11. 11.
    Leyh-Bannurah SR, Karakiewicz PI, Dell’Oglio P, Briganti A, Schiffmann J, Pompe RS et al (2017) Comparison of 11 active surveillance protocols in contemporary European men treated with radical prostatectomy. Clin Genitourin Cancer.  https://doi.org/10.1016/j.clgc.2017.08.005 PubMedCrossRefGoogle Scholar
  12. 12.
    Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378(19):1767–1777.  https://doi.org/10.1056/NEJMoa1801993 PubMedCrossRefGoogle Scholar
  13. 13.
    Toi A, Neill MG, Lockwood GA, Sweet JM, Tammsalu LA, Fleshner NE (2007) The continuing importance of transrectal ultrasound identification of prostatic lesions. J Urol 177(2):516–520PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrentschuk N, Haider MA, Daljeet N, Evans A, Toi A, Finelli A et al (2010) ‘Prostatic evasive anterior tumours’: the role of magnetic resonance imaging. BJU Int 105(9):1231–1236PubMedCrossRefGoogle Scholar
  15. 15.
    Kryvenko ON, Carter HB, Trock BJ, Epstein JI (2014) Biopsy criteria for determining appropriateness for active surveillance in the modern era. Urology 83(4):869–874PubMedCrossRefGoogle Scholar
  16. 16.
    Augustin H, Erbersdobler A, Hammerer PG, Graefen M, Huland H (2004) Prostate cancers in the transition zone: Part 2; clinical aspects. BJU Int 94(9):1226–1229PubMedCrossRefGoogle Scholar
  17. 17.
    Godoy G, Tareen BU, Lepor H (2009) Site of positive surgical margins influences biochemical recurrence after radical prostatectomy. BJU Int 104(11):1610–1614PubMedCrossRefGoogle Scholar
  18. 18.
    Leyh-Bannurah S‑R, Kachanov M, Beyersdorff D, Preisser F, Tilki D, Fisch M et al (2018) Anterior localization of prostate cancer suspicious MRI lesions in patients undergoing initial and repeat biopsy: results from 1,161 patients undergoing MRI/ultrasound fusion-guided targeted biopsies. J Urol 200(5):1035–1040.  https://doi.org/10.1016/j.juro.2018.06.026 PubMedCrossRefGoogle Scholar
  19. 19.
    Schoots IG, Petrides N, Giganti F, Bokhorst LP, Rannikko A, Klotz L et al (2015) Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol 67(4):627–636PubMedCrossRefGoogle Scholar
  20. 20.
    Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ et al (2016) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69(1):16–40PubMedCrossRefGoogle Scholar
  21. 21.
    Junker D, Quentin M, Nagele U, Edlinger M, Richenberg J, Schaefer G et al (2015) Evaluation of the PI-RADS scoring system for mpMRI of the prostate: a whole-mount step-section analysis. World J Urol 33(7):1023–1030PubMedCrossRefGoogle Scholar
  22. 22.
    Panebianco V, Barchetti G, Simone G, Del Monte M, Ciardi A, Grompone MD et al (2018) Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur Urol 74(1):48–54.  https://doi.org/10.1016/j.eururo.2018.03.007 PubMedCrossRefGoogle Scholar
  23. 23.
    Wysock JS, Mendhiratta N, Zattoni F, Meng X, Bjurlin M, Huang WC et al (2016) Predictive value of negative 3T multiparametric magnetic resonance imaging of the prostate on 12-core biopsy results. BJU Int 118(4):515–520PubMedCrossRefGoogle Scholar
  24. 24.
    Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822PubMedCrossRefGoogle Scholar
  25. 25.
    Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cash H, Günzel K, Maxeiner A, Stephan C, Fischer T, Durmus T et al (2015) Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int 118(1):35–43.  https://doi.org/10.1111/bju.13327 PubMedCrossRefGoogle Scholar
  27. 27.
    Truong M, Feng C, Hollenberg G, Weinberg E, Messing EM, Miyamoto H et al (2018) A comprehensive analysis of cribriform morphology on magnetic resonance imaging/ultrasound fusion biopsy correlated with radical prostatectomy specimens. J Urol 199(1):106–113PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y, Mongan J, Behr SC, Sud S, Coakley FV, Simko J et al (2016) Beyond prostate adenocarcinoma: expanding the differential diagnosis in prostate pathologic conditions. Radiographics 36(4):1055–1075PubMedCrossRefGoogle Scholar
  29. 29.
    Pokorny MR, de Rooij M, Duncan E, Schroder FH, Parkinson R, Barentsz JO et al (2014) Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 66(1):22–29PubMedCrossRefGoogle Scholar
  30. 30.
    Radtke JP, Kuru TH, Boxler S, Alt CD, Popeneciu IV, Huettenbrink C et al (2015) Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imaging-ultrasound fusion guidance. J Urol 193(1):87–94PubMedCrossRefGoogle Scholar
  31. 31.
    Cucchiara V, Cooperberg MR, Dall’Era M, Lin DW, Montorsi F, Schalken JA et al (2018) Genomic markers in prostate cancer decision making. Eur Urol 73(4):572–582PubMedCrossRefGoogle Scholar
  32. 32.
    Loeb S, Dani H (2017) Whom to biopsy: prediagnostic risk stratification with biomarkers, nomograms, and risk calculators. Urol Clin North Am 44(4):517–524PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lamy P‑J, Allory Y, Gauchez A‑S, Asselain B, Beuzeboc P, de Cremoux P et al (2017) Prognostic biomarkers used for localised prostate cancer management: a systematic review. Eur Urol Focus 4(6):790–803.  https://doi.org/10.1016/j.euf.2017.02.017 PubMedCrossRefGoogle Scholar
  34. 34.
    Radtke JP, Kuru TH, Bonekamp D, Freitag M, Wolf M, Alt C et al (2016) Further reduction of disqualification rates by additional MRI-targeted biopsy with transperineal saturation biopsy compared with standard 12-core systematic biopsies for the selection of prostate cancer patients for active surveillance. Prostate Cancer Prostatic Dis 19(3):283PubMedCrossRefGoogle Scholar
  35. 35.
    Dell’Oglio P, Bandini M, Leyh-Bannurah SR, Tian Z, Trudeau V, Larcher A et al (2018) External beam radiotherapy with or without androgen deprivation therapy in elderly patients with high metastatic risk prostate cancer. Urol Oncol 36(5):239.e9–239.e15CrossRefGoogle Scholar
  36. 36.
    Kuhl CK, Bruhn R, Krämer N, Nebelung S, Heidenreich A, Schrading S (2017) Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285(2):493–505PubMedCrossRefGoogle Scholar
  37. 37.
    Di Campli E, Delli Pizzi A, Seccia B, Cianci R, d’Annibale M, Colasante A et al (2018) Diagnostic accuracy of biparametric vs multiparametric MRI in clinically significant prostate cancer: comparison between readers with different experience. Eur J Radiol 101:17–23PubMedCrossRefGoogle Scholar
  38. 38.
    Faria R, Soares MO, Spackman E, Ahmed HU, Brown LC, Kaplan R et al (2018) Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS). Eur Urol 73(1):23–30PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sanda MG, Feng Z, Howard DH, Tomlins SA, Sokoll LJ, Chan DW et al (2017) Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol 3(8):1085PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Van Neste L, Hendriks RJ, Dijkstra S, Trooskens G, Cornel EB, Jannink SA et al (2016) Detection of high-grade prostate cancer using a urinary molecular biomarker—based risk score. Eur Urol 70(5):740–748PubMedCrossRefGoogle Scholar
  41. 41.
    McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S et al (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2(7):882PubMedCrossRefGoogle Scholar
  42. 42.
    Auprich M, Bjartell A, Chun FKH, de la Taille A, Freedland SJ, Haese A et al (2011) Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. Eur Urol 60(5):1045–1054PubMedCrossRefGoogle Scholar
  43. 43.
    Partin AW, Van Neste L, Klein EA, Marks LS, Gee JR, Troyer DA et al (2014) Clinical validation of an epigenetic assay to predict negative Histopathological results in repeat prostate biopsies. J Urol 192(4):1081–1087PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, McNeill SA et al (2013) Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 189(3):1110–1116PubMedCrossRefGoogle Scholar
  45. 45.
    Spratt DE, Yousefi K, Deheshi S, Ross AE, Den RB, Schaeffer EM et al (2017) Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J Clin Oncol 35(18):1991–1998PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Den RB, Yousefi K, Trabulsi EJ, Abdollah F, Choeurng V, Feng FY et al (2015) Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol 33(8):944–951PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66(3):550–560PubMedCrossRefGoogle Scholar
  48. 48.
    Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J et al (2015) A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 68(1):123–131PubMedCrossRefGoogle Scholar
  49. 49.
    Cuzick J, Berney DM, Fisher G, Mesher D, Møller H, Reid JE et al (2012) Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 106(6):1095–1099PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bishoff JT, Freedland SJ, Gerber L, Tennstedt P, Reid J, Welbourn W et al (2014) Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol 192(2):409–414PubMedCrossRefGoogle Scholar
  51. 51.
    Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S et al (2013) Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 31(11):1428–1434PubMedCrossRefGoogle Scholar
  52. 52.
    Freedland SJ, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J et al (2013) Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys 86(5):848–853PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Sami-Ramzi Leyh-Bannurah
    • 1
    • 2
    Email author
  • Hannes Cash
    • 3
  • Angelika Borkowetz
    • 4
  • Markus Graefen
    • 1
  • Thorsten Schlomm
    • 3
  • Boris Hadaschik
    • 5
  • Lars Budäus
    • 1
  1. 1.Martini-Klinik, ProstatakarzinomzentrumUniversitätsklinikum Hamburg EppendorfHamburgDeutschland
  2. 2.Klinik für UrologieUniversitätsklinikum Hamburg EppendorfHamburgDeutschland
  3. 3.Klinik für UrologieCharité, Universitätsmedizin BerlinBerlinDeutschland
  4. 4.Klinik für Urologie, Universitätsklinikum Carl Gustav CarusTechnische Universität DresdenDresdenDeutschland
  5. 5.Klinik für UrologieUniversitätsklinikum EssenEssenDeutschland

Personalised recommendations