Advertisement

Strategien bei gastrointestinalen Stromatumoren und intraabdominellen sowie retroperitonealen Sarkomen

  • Jens JakobEmail author
Leitthema

Zusammenfassung

Hintergrund

Die häufigsten abdominellen mesenchymalen Tumoren sind gastrointestinale Stromatumoren (GIST) und retroperitoneale bzw. intraabdominelle Sarkome.

Ziel

Im vorliegenden Artikel werden aktuelle Aspekte der Diagnostik (Biopsie) und Therapie sowie der Versorgungsstrukturen bei GIST und anderen abdominellen Sarkomen dargelegt.

Material und Methoden

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed zum Thema GIST und retroperitoneale und intraabdominelle Sarkome.

Ergebnisse

Aus der histologisch heterogenen Gruppe der intraabdominellen/retroperitonealen Weichgewebesarkome grenzen sich GIST aufgrund einer typischen Gain-of-Function-Mutation von Rezeptortyrosinkinasen ab. Für Letztere eröffnet sich hierdurch die Chance auf eine in randomisierten Studien geprüfte, gezielte Therapie. Die Therapieansätze bei anderen abdominellen Sarkomen sind dahingegen meist nicht molekular zielgerichtet und beruhen weitgehend auf Daten aus Kohortenstudien und randomisierten Studien bei Extremitätensarkomen.

Schlussfolgerung

Das unterschiedliche Management von GIST und anderen abdominellen Sarkomen ergibt sich aus der Etablierung der gezielten GIST-Therapie durch Tyrosinkinaseinhibitoren. Ansonsten wird das Therapiemanagement beider Entitäten durch die ihre Seltenheit bestimmt.

Schlüsselwörter

Biopsie Gain-of-Function-Mutation Präoperatives Tumorboard Multimodale Therapie Register 

Strategies for gastrointestinal stromal tumors and intraabdominal and retroperitoneal sarcomas

Abstract

Background

The most common abdominal mesenchymal tumors are gastrointestinal stromal tumors (GIST) and retroperitoneal and intraabdominal sarcomas.

Objective

This article discusses current aspects of diagnostics (biopsy), treatment, and care structures of GIST and retroperitoneal and intraabdominal sarcomas.

Materials and methods

This paper is based on a selective literature search in the PubMed database on GIST and retroperitoneal and intraabdominal sarcomas.

Results

In contrast to the histologically heterogeneous group of intraabdominal/retroperitoneal soft tissue sarcomas, GIST are characterized by a typical gain-of-function mutation of receptor tyrosine kinases. This represents an opportunity for targeted therapies that have been tested in randomized trials. Treatment approaches for other abdominal sarcomas generally do not include molecularly targeted therapies and are largely based on data from cohort studies and randomized studies in limb sarcomas.

Conclusion

The different management of GIST and other abdominal sarcomas results from the establishment of targeted GIST therapies using tyrosine kinase inhibitors. Otherwise, the treatment of these entities is determined by their rarity.

Keywords

Biopsy Gain of function mutation Preoperative multidisciplinary tumor board Multimodal therapy Registries 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Jakob erhielt Honorare der Firmen Lilly und Pfizer.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Ressing M et al (2018) Strengthening health data on a rare and heterogeneous disease: sarcoma incidence and histological subtypes in Germany. BMC Public Health 18(1):235PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mastrangelo G et al (2012) Incidence of soft tissue sarcoma and beyond: a population-based prospective study in 3 European regions. Cancer 118(21):5339–5348PubMedCrossRefGoogle Scholar
  3. 3.
    Toro JR et al (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: An analysis of 26,758 cases. Int J Cancer 119(12):2922–2930PubMedCrossRefGoogle Scholar
  4. 4.
    Blay JY et al (2019) Surgery in reference centers improves survival of sarcoma patients: a nationwide study. Ann Oncol 30(7):1143–1153PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Blay JY et al (2017) Improved survival using specialized multidisciplinary board in sarcoma patients. Ann Oncol 28(11):2852–2859PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Deutsches Sarkomregister (GISAR) https://sarkom.expert/. Zugegriffen: 29. Okt. 2019
  7. 7.
    von Mehren M et al (2018) Soft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 16(5):536–563CrossRefGoogle Scholar
  8. 8.
    Casali PG et al (2018) Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(Supplement_4):iv51–iv67PubMedCrossRefGoogle Scholar
  9. 9.
    Berger-Richardson D, Swallow CJ (2017) Needle tract seeding after percutaneous biopsy of sarcoma: risk/benefit considerations. Cancer 123(4):560–567PubMedCrossRefGoogle Scholar
  10. 10.
    Van Houdt WJ et al (2017) Needle tract seeding following core biopsies in retroperitoneal sarcoma. Eur J Surg Oncol 43(9):1740–1745PubMedCrossRefGoogle Scholar
  11. 11.
    Trindade AJ et al (2019) Fine-needle biopsy is superior to fine-needle aspiration of suspected gastrointestinal stromal tumors: a large multicenter study. Endosc Int Open 7(7):E931–E936PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Eriksson M et al (2016) Needle biopsy through the abdominal wall for the diagnosis of gastrointestinal stromal tumour – Does it increase the risk for tumour cell seeding and recurrence? Eur J Cancer 59:128–133PubMedCrossRefGoogle Scholar
  13. 13.
    Suman P et al (2017) Preoperative adrenal biopsy does not affect overall survival in adrenocortical carcinoma. Am J Surg 214(4):748–751PubMedCrossRefGoogle Scholar
  14. 14.
    Holmebakk T et al (2018) Recurrence-free survival after resection of gastric gastrointestinal stromal tumors classified according to a strict definition of tumor rupture: a population-based study. Ann Surg Oncol 25(5):1133–1139PubMedCrossRefGoogle Scholar
  15. 15.
    Nishida T et al (2019) Defining tumor rupture in gastrointestinal stromal tumor. Ann Surg Oncol 26(6):1669–1675PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dematteo RP et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Joensuu H et al (2012) One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 307(12):1265–1272PubMedCrossRefGoogle Scholar
  18. 18.
    Casali PG et al (2015) Time to definitive failure to the first Tyrosine kinase inhibitor in localized GI Stromal tumors treated with Imatinib as an Adjuvant: a European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group intergroup randomized trial in collaboration with the Australasian Gastro-Intestinal Trials Group, UNICANCER, French Sarcoma Group, Italian Sarcoma Group, and Spanish Group for Research on Sarcomas. J Clin Oncol 33(36):4276–4283PubMedCrossRefGoogle Scholar
  19. 19.
    Jakob J, Hohenberger P (2018) Neoadjuvant therapy to downstage the extent of resection of gastrointestinal Stromal tumors. Visc Med 34(5):359–365PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yoo C et al (2010) Cross-sectional study of imatinib plasma trough levels in patients with advanced gastrointestinal stromal tumors: impact of gastrointestinal resection on exposure to imatinib. J Clin Oncol 28(9):1554–1559PubMedCrossRefGoogle Scholar
  21. 21.
    Joensuu H et al (2017) Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal Stromal tumors treated with adjuvant Imatinib: an exploratory analysis of a randomized clinical trial. JAMA Oncol 3(5):602–609PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Demetri GD et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368(9544):1329–1338PubMedCrossRefGoogle Scholar
  23. 23.
    Demetri GD et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302PubMedCrossRefGoogle Scholar
  24. 24.
    Kang YK et al (2013) Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol 14(12):1175–1182PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Garner AP et al (2014) Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res 20(22):5745–5755PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Smith BD et al (2019) Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell 35(5):738–751.e9PubMedCrossRefGoogle Scholar
  27. 27.
    Gebreyohannes YK et al (2019) Robust activity of avapritinib, potent and highly selective inhibitor of mutated KIT, in patient-derived xenograft models of gastrointestinal Stromal tumors. Clin Cancer Res 25(2):609–618PubMedCrossRefGoogle Scholar
  28. 28.
    Bonvalot S et al (2012) Technical considerations in surgery for retroperitoneal sarcomas: position paper from E‑Surge, a master class in sarcoma surgery, and EORTC-STBSG. Ann Surg Oncol 19(9):2981–2991PubMedCrossRefGoogle Scholar
  29. 29.
    Harati K et al (2017) Soft tissue sarcomas of the extremities: surgical margins can be close as long as the resected tumor has no ink on it. Oncologist 22(11):1400–1410PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gundle KR et al (2018) Analysis of Margin Classification Systems for Assessing the Risk of Local Recurrence After Soft Tissue Sarcoma Resection. J Clin Oncol 36(7):704–709PubMedCrossRefGoogle Scholar
  31. 31.
    Jakob J, Hohenberger P (2019) Principles of sarcoma surgery. Pathologe 40(4):431–435PubMedCrossRefGoogle Scholar
  32. 32.
    Bonvalot S et al (2019) Strass (EORTC 62092): A phase III randomized study of preoperative radiotherapy plus surgery versus surgery alone for patients with retroperitoneal sarcoma. J Clin Oncol 37(suppl):abstr 11001–2019 (in ASCO)Google Scholar
  33. 33.
    Haas RLM et al (2019) Radiotherapy for retroperitoneal liposarcoma: a report from the Transatlantic Retroperitoneal Sarcoma Working Group. Cancer 125(8):1290–1300PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gronchi A et al (2016) Variability in patterns of recurrence after resection of primary retroperitoneal sarcoma (RPS): a report on 1007 patients from the Multi-Institutional Collaborative RPS Working Group. Ann Surg 263(5):1002–1009PubMedCrossRefGoogle Scholar
  35. 35.
    Woll PJ et al (2012) Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet Oncol 13(10):1045–1054PubMedCrossRefGoogle Scholar
  36. 36.
    Pasquali S et al (2019) The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur J Cancer 109:51–60PubMedCrossRefGoogle Scholar
  37. 37.
    Raut CP et al (2016) External validation of a multi-institutional retroperitoneal sarcoma nomogram. Cancer 122(9):1417–1424PubMedCrossRefGoogle Scholar
  38. 38.
    Nagasubramanian R et al (2016) Infantile fibrosarcoma with NTRK3-ETV6 fusion successfully treated with the tropomyosin-related kinase inhibitor LOXO-101. Pediatr Blood Cancer 63(8):1468–1470PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gronchi A et al (2017) Histotype-tailored neoadjuvant chemotherapy versus standard chemotherapy in patients with high-risk soft-tissue sarcomas (ISG-STS 1001): an international, open-label, randomised, controlled, phase 3, multicentre trial. Lancet Oncol 18(6):812–822PubMedCrossRefGoogle Scholar
  40. 40.
    Perrier L et al (2012) Clinicians’ adherence versus non adherence to practice guidelines in the management of patients with sarcoma: a cost-effectiveness assessment in two European regions. BMC Health Serv Res 12:82PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bonvalot S et al (2019) Survival benefit of the surgical management of retroperitoneal sarcoma in a reference center: a nationwide study of the French Sarcoma Group from the netSarc database. Ann Surg Oncol 26(7):2286–2293PubMedCrossRefGoogle Scholar
  42. 42.
    Jakob J et al (2018) Treatment of retroperitoneal sarcoma in Germany : results of a survey of the German Society of General and Visceral Surgery, the German Interdisciplinary Sarcoma Study Group and the advocacy group Das Lebenshaus. Chirurg 89(1):50–55PubMedCrossRefGoogle Scholar
  43. 43.
    Honore C et al (2017) Abdominal desmoplastic small round cell tumor without extraperitoneal metastases: Is there a benefit for HIPEC after macroscopically complete cytoreductive surgery? PLoS ONE 12(2):e171639PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Honore C et al (2019) Can we cure patients with abdominal desmoplastic small round cell tumor? Results of a retrospective multicentric study on 100 patients. Surg Oncol 29:107–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Sarkomchirurgie, Klinik für Allgemein‑, Viszeral- und KinderchirurgieUniversitätsmedizin GöttingenGöttingenDeutschland

Personalised recommendations