Advertisement

Neue Entwicklungen der Systemtherapie maligner Erkrankungen

  • Andreas HochhausEmail author
  • Thomas Ernst
Leitthema
  • 42 Downloads

Zusammenfassung

Hintergrund

Neue Krebstherapeutika mit zielgerichteter Wirksamkeit und guter Verträglichkeit wurden entwickelt.

Ziel

Ziel der Arbeit ist die exemplarische Darstellung neuer Medikamente in der Onkologie.

Material und Methoden

Grundlage der Darstellung ist das Onko Update 2019.

Schlüsselwörter

Tyrosinkinaseinhibitoren PARP-Inhibitoren Arzneimitteltransporter Personalisierte Therapie Zielgerichtete Therapie 

Abkürzungen

AKT

Proteinkinase B

ALK

Anaplastic lymphoma kinase

AML

Akute myeloische Leukämie

AXL

AXL-Rezeptor-Tyrosinkinase

BCL‑2

B‑cell lymphoma 2 protein

BRAF

BRAF Serin-Threonin-Kinase

BRCA

Breast cancer susceptibility protein

BTK

Bruton’s Tyrosinkinase

CDK

Cyclin-dependent Kinase

CLL

Chronische lymphatische Leukämie

CML

Chronische myeloische Leukämie

CYP3A4

Cytochrome P450 3A4

EGFR

Epidermal growth factor receptor

EMA

European Medicines Agency

FDA

Federal Drug Agency

FGFR

Fibroblast growth factor receptor

FLT3

Fms related tyrosine kinase 3

HER2

Human epidermal growth factor receptor 2

IDH

Isocitratdehydrogenase

IGHV

Immunglobulinschwerkettengen

IHC

Immunhistochemie

ITD

Internal tandem duplication

KRAS

Protoonkogen KRAS

MDS

Myelodysplastisches Syndrom

MEK

Dual threonine and tyrosine recognition kinase

MET

Tyrosin protein kinase MET

MRD

Measurable residual disease

NSCLC

Nichtkleinzelliges Lungenkarzinom

NTRK

Neurotrophine receptor kinase

PARP

Poly (ADP-ribose) polymerase

PD‑1

Programmed death receptor 1

PD-L1

Programmed death ligand 1

PI3K

Phosphoinositid-3-Kinase

ROS1

ROS1-Rezeptor-Tyrosinkinase

STAT5

Signal transducer and activator of transcription 5

TKI

Tyrosinkinaseinhibitoren

TP53

Tumorprotein p53

VEGFR

Vascular endothelial growth factor receptor

New developments in system therapy of malignant disease

Abstract

Background

New anticancer drugs were developed with targeted efficacy and good tolerability.

Objective

The aim of this review paper is an exemplary presentation of new drugs in oncology.

Material and methods

The basis of this article is the Onko Update 2019.

Keywords

Tyrosine kinase inhibitors PARP inhibitors Drug delivery Personalized treatment Targeted therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Hochhaus und T. Ernst erhielten Forschungsunterstützung von Novartis, BMS, Incyte, Pfizer.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Alle genannten klinischen Studien wurden von unabhängigen Ethikkommissionen genehmigt.

Literatur

  1. 1.
    Kanz L, Bokemeyer C, Neubauer A (2019) Handbuch ONKOLOGIE 2019. med publico GmbH, WiesbadenGoogle Scholar
  2. 2.
    Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376:917–927CrossRefGoogle Scholar
  3. 3.
    Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A et al (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173:371–385CrossRefGoogle Scholar
  4. 4.
    Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA et al (2017) The target landscape of clinical kinase drugs. Science 358:6367CrossRefGoogle Scholar
  5. 5.
    Marquart J, Chen EY, Prasad V (2018) Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol 4:1093–1098CrossRefGoogle Scholar
  6. 6.
    Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD et al (2017) Midostaurin plus chemotherapy for acute Myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464CrossRefGoogle Scholar
  7. 7.
    Cortes JE, Tallman MS, Schiller GJ, Trone D, Gammon G, Goldberg SL et al (2018) Phase-IIb-study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood 132(6):598–607Google Scholar
  8. 8.
    Shanafelt TD, Wang V, Kay NE, Hanson CA, O’Brien SM, Barrientos JC et al (2018) A randomized phase III study of Ibrutinib (PCI-32765)-based therapy vs. Standard Fludarabine, Cyclophosphamide, and Rituximab (FCR) Chemoimmunotherapy in untreated younger patients with chronic lymphocytic leukemia (CLL): a trial of the ECOG-ACRIN cancer research group (E1912). Blood 132(Suppl 1):LBA-4AGoogle Scholar
  9. 9.
    Woyach JA, Ruppert AS, Heerema NA, Zhao W, Booth AM, Ding W et al (2018) Ibrutinib regimens versus Chemoimmunotherapy in older patients with untreated CLL. N Engl J Med 379(26):2517–2528CrossRefGoogle Scholar
  10. 10.
    Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G et al (2019) Ibrutinib and Venetoclax for first-line treatment of CLL. N Engl J Med 380(22):2095–2103CrossRefGoogle Scholar
  11. 11.
    Schmidt C, Zoellner AK, Jurinovic V, Sökler M, Forstpointner R, Haubner S et al (2018) Chemotherapy-free combination of Obinutuzumab and Ibrutinib in first line treatment of follicular Lymphoma. The alternative study by the German low grade Lymphoma study group (GLSG). Blood 132:448CrossRefGoogle Scholar
  12. 12.
    Bartlett NL, Costello BA, LaPlant BR, Ansell SM, Kuruvilla JG, Reeder CB et al (2018) Single-agent ibrutinib in relapsed or refractory follicular lymphoma: a phase 2 consortium trial. Blood 2018(131):182–190CrossRefGoogle Scholar
  13. 13.
    Gopal AK, Schuster SJ, Fowler NH, Trotman J, Hess G, Hou JZ et al (2018) Ibrutinib as treatment for patients with relapsed/refractory follicular Lymphoma: results from the open-label, Multicenter, PHASE II DAWN study. J Clin Oncol 36:2405–2412CrossRefGoogle Scholar
  14. 14.
    Byrd JC, Woyach JA, Furman RR, Martin P, O’Brien SM, Brown JR et al (2018) Acalabrutinib in treatment-naive chronic lymphocytic leukemia (CLL): updated results from the phase 1/2 ACE-CL-001 study. Blood 132(Suppl 1):692Google Scholar
  15. 15.
    Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD et al (2018) Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet 391:659–667CrossRefGoogle Scholar
  16. 16.
    Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018(378):113–125CrossRefGoogle Scholar
  17. 17.
    Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC et al (2018) Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET Factor-Dysregulated non-small-cell lung cancer. J Clin Oncol 36(31):3101–3109CrossRefGoogle Scholar
  18. 18.
    Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S et al (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small-cell lung cancer. Nat Med 2018(24):638–646CrossRefGoogle Scholar
  19. 19.
    Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS et al (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379:2027–2039CrossRefGoogle Scholar
  20. 20.
    Powles T, Motzer RJ, Escudier B, Pal S, Kollmannsberger C, Pikiel J et al (2018) Outcomes based on prior therapy in the phase 3 METEOR trial of cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 119:663–669CrossRefGoogle Scholar
  21. 21.
    Escudier B, Powles T, Motzer RJ, Olencki T, Arén Frontera O, Oudard S et al (2018) Cabozantinib, a new standard of care for patients with advanced renal cell carcinoma and bone metastases? Subgroup analysis of the METEOR trial. J Clin Oncol 36:765–772CrossRefGoogle Scholar
  22. 22.
    Savona MR, Pollyea DA, Stock W, Oehler VG, Schroeder MA, Lancet J et al (2018) Phase Ib study of Glasdegib, a hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS. Clin Cancer Res 24(10):2294–2303CrossRefGoogle Scholar
  23. 23.
    Wolf J, Seto T, Han J, Reguart N, Garon EB, Groen HJM et al (2018) Results of the GEOMETRY mono‑1 phase-II-study for evaluation of the MET inhibitor capmatinib (INC280) in patients with MET∆ex14 mutated advanced non-small cell lung cancer. Ann Oncol 29(suppl. 8):LBA52Google Scholar
  24. 24.
    Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E et al (2019) Five-year outcomes with Dabrafenib plus Trametinib in metastatic melanoma. N Engl J Med.  https://doi.org/10.1056/NEJMoa1904059 Google Scholar
  25. 25.
    Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V et al (2017) Adjuvant Dabrafenib plus Trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377:1813–1823CrossRefGoogle Scholar
  26. 26.
    Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G et al (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19:1315–1327CrossRefGoogle Scholar
  27. 27.
    Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW et al (2018) Discovery of Asciminib (ABL001), an Allosteric inhibitor of the Tyrosine Kinase activity of BCR-ABL1. J Med Chem 61(18):8120–8135CrossRefGoogle Scholar
  28. 28.
    Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS et al (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128(2):195–203CrossRefGoogle Scholar
  29. 29.
    André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med 380(20):1929–1940CrossRefGoogle Scholar
  30. 30.
    Pascual J, Turner NC (2019) Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol.  https://doi.org/10.1093/annonc/mdz133 Google Scholar
  31. 31.
    Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739CrossRefGoogle Scholar
  32. 32.
    Demetri GD, Paz-Ares L, Farago AF, Liu SV, Chawla SP, Tosi D et al (2018) Efficacy and safety of entrectinib in patients with NTRK fusion-positive tumors: pooled analysis of STARTRK‑2, STARTRK‑1 and ALKA-372-001. Ann Oncol 29(suppl. 8):LBA17Google Scholar
  33. 33.
    Stein EM, DiNardo CD, Fathi AT, Pollyea DA, Stone RM, Altman JK et al (2019) Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 133(7):676–687CrossRefGoogle Scholar
  34. 34.
    Fathi AT, DiNardo CD, Kline I, Kenvin L, Gupta I, Attar EC et al (2018) Differentiation syndrome associated with Enasidenib, a selective inhibitor of mutant Isocitrate Dehydrogenase 2: analysis of a phase-I/II-study. Jama Oncol 4:1106–1110CrossRefGoogle Scholar
  35. 35.
    DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS et al (2018) Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398CrossRefGoogle Scholar
  36. 36.
    Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N et al (2018) PALOMA-3: Fulvestrant + Palbociclib – Überleben. N Engl J Med 379:1926–1936CrossRefGoogle Scholar
  37. 37.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S et al (2018) Updated results from MONALEESA‑2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol 29:1541–1547Google Scholar
  38. 38.
    Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X et al (2017) MONARCH 2: Abemaciclib in combination with Fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol 35(25):2875–2884CrossRefGoogle Scholar
  39. 39.
    Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19:975–986CrossRefGoogle Scholar
  40. 40.
    Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH et al (2018) Talazoparib in patients with advanced breast cancer and a Germline BRCA mutation. N Engl J Med 379:753–763CrossRefGoogle Scholar
  41. 41.
    Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, McDevitt MA et al (2015) Telomerase inhibitor Imetelstat in patients with essential Thrombocythemia. N Engl J Med 373(10):920–928CrossRefGoogle Scholar
  42. 42.
    Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM et al (2015) A pilot study of the Telomerase inhibitor Imetelstat for Myelofibrosis. N Engl J Med 373(10):908–919CrossRefGoogle Scholar
  43. 43.
    Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK et al (2018) CPX-351 (cytarabine and daunorubicin) Liposome for injection versus conventional Cytarabine plus Daunorubicin in older patients with newly diagnosed secondary acute Myeloid leukemia. J Clin Oncol 36(26):2684–2692CrossRefGoogle Scholar
  44. 44.
    Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS et al (2018) Ado-Trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 36:2532–2537CrossRefGoogle Scholar
  45. 45.
    Saadat M, Zahednezhad F, Zakeri-Milani P, Reza Heidari H, Shahbazi-Mojarrad J, Valizadeh H (2019) Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J Pharm Pharm Sci 22(1):191–220CrossRefGoogle Scholar
  46. 46.
    Mioc A, Mioc M, Ghiulai R, Voicu M, Babuta R, Trandafirescu C et al (2019) Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy. Curr Med Chem.  https://doi.org/10.2174/0929867326666190506123721 Google Scholar
  47. 47.
    Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY et al (2019) Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 1871(2):419–433CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Innere Medizin II, Abteilung Hämatologie/OnkologieUniversitätsklinikum JenaJenaDeutschland

Personalised recommendations