Advertisement

Der Onkologe

, Volume 25, Issue 1, pp 31–36 | Cite as

Die Rolle der Positronenemissionstomographie bei Gliomen

  • B. Feuerecker
  • I. Karimov
  • W. Weber
  • I. YakushevEmail author
Leitthema
  • 37 Downloads

Zusammenfassung

Hintergrund

Die Störung der Blut-Hirn-Schranke – gemessen mittels Magnetresonanztomographie – stellt kein zuverlässiges Zeichen von Gliomen dar. Mittels Positronenemissionstomographie (PET) kann ein Aminosäuretransport in die Tumorzellen gemessen werden, unabhängig von der Blut-Hirn-Schranke.

Ziel

Die Arbeit fasst ausgewählte Literatur zur Rolle der PET bei Gliomen zusammen.

Methoden

Anhand von PubMed wurde eine selektive Literaturrecherche durchgeführt.

Ergebnisse

In prägnanter Form erläutert der Artikel die Grundlagen und Durchführung der Aminosäure-PET. Klinische Anwendungen erfassen Tumorausdehnung, Grading und Differenzierung von benignen Befunden, Therapieplanung und -Kontrolle sowie die Differenzierung von Gliomrezidiven und therapiassoziierten Veränderungen.

Schlussfolgerung

Die PET mit radioaktiv markierten Aminosäuren stellt eine wertvolle Zusatzmethode in der Diagnostik und beim Therapiemonitoring von Gliomen dar.

Schlüsselwörter

Aminosäure O-(2-[18F]-Fluorethyl)-L-Tyrosin  Grading Hirneigener Tumor Therapieplanung 

The role of positron emission tomography in gliomas

Abstract

Background

Blood-brain barrier disruption as assessed with magnetic resonance imaging is not a reliable sign of gliomas. Positron emission tomography (PET) can be used to measure the transport of amino acids into tumor tissue, independent of the blood-brain barrier.

Objective

This article reviews selected literature about the role of PET in gliomas.

Methods

A search for relevant literature was carried out in PubMed .

Results

In a concise manner this review explains the basic principles and procedures of amino acid PET. Clinical indications cover differentiation of benign findings, glioma delineation, grading, treatment planning and response, as well as differentiation between relapse and treatment-related changes.

Conclusion

PET with radiolabeled amino acids represents a valuable additional tool for the diagnostics and treatment monitoring of gliomas.

Keywords

Amino acids FET Grading Brain tumor Treatment planning 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Feuerecker, I. Karimov, W. Weber und I. Yakushev geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Albert NL, Weller M, Suchorska B et al (2016) Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199–1208CrossRefGoogle Scholar
  2. 2.
    Albert NL, Winkelmann I, Suchorska B et al (2016) Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging 43:1105–1114CrossRefGoogle Scholar
  3. 3.
    Arbizu J, Tejada S, Marti-Climent JM et al (2012) Quantitative volumetric analysis of gliomas with sequential MRI and (1)(1)C-methionine PET assessment: patterns of integration in therapy planning. Eur J Nucl Med Mol Imaging 39:771–781CrossRefGoogle Scholar
  4. 4.
    Barker FG 2nd, Chang SM, Valk PE et al (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126CrossRefGoogle Scholar
  5. 5.
    Brandsma D, Van Den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638CrossRefGoogle Scholar
  6. 6.
    Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O‑(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 36:841–847CrossRefGoogle Scholar
  7. 7.
    Ceccon G, Lohmann P, Stoffels G et al (2017) Dynamic O‑(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 19:281–288PubMedGoogle Scholar
  8. 8.
    Ewelt C, Floeth FW, Felsberg J et al (2011) Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:541–547CrossRefGoogle Scholar
  9. 9.
    Floeth FW, Pauleit D, Sabel M et al (2006) 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med 47:776–782PubMedGoogle Scholar
  10. 10.
    Galldiks N, Dunkl V, Stoffels G et al (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O‑(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695CrossRefGoogle Scholar
  11. 11.
    Galldiks N, Langen KJ, Pope WB (2015) From the clinician’s point of view—What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 17:1434–1444CrossRefGoogle Scholar
  12. 12.
    Galldiks N, Law I, Pope WB et al (2017) The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. Neuroimage Clin 13:386–394CrossRefGoogle Scholar
  13. 13.
    Galldiks N, Rapp M, Stoffels G et al (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 40:22–33CrossRefGoogle Scholar
  14. 14.
    Galldiks N, Stoffels G, Filss C et al (2015) The use of dynamic O‑(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 17:1293–1300CrossRefGoogle Scholar
  15. 15.
    Galldiks N, Stoffels G, Ruge MI et al (2013) Role of O‑(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54:2046–2054CrossRefGoogle Scholar
  16. 16.
    Grosu AL, Weber WA (2010) PET for radiation treatment planning of brain tumours. Radiother Oncol 96:325–327CrossRefGoogle Scholar
  17. 17.
    Grosu AL, Weber WA, Riedel E et al (2005) L‑(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74CrossRefGoogle Scholar
  18. 18.
    Heinzel A, Muller D, Langen KJ et al (2013) The use of O‑(2-18F-fluoroethyl)-L-tyrosine PET for treatment management of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a cost-effectiveness analysis. J Nucl Med 54:1217–1222CrossRefGoogle Scholar
  19. 19.
    Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRefGoogle Scholar
  20. 20.
    Hutterer M, Nowosielski M, Putzer D et al (2011) O‑(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52:856–864CrossRefGoogle Scholar
  21. 21.
    Jansen EP, Dewit LG, Van Herk M et al (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156CrossRefGoogle Scholar
  22. 22.
    Jaymanne DT, Kaushal S, Chan D et al (2018) Utilizing 18F-fluoroethyl-l-tyrosine positron emission tomography in high grade glioma for radiation treatment planning in patients with contraindications to MRI. J Med Imaging Radiat Oncol 62:122–127CrossRefGoogle Scholar
  23. 23.
    Kunz M, Thon N, Eigenbrod S et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13:307–316CrossRefGoogle Scholar
  24. 24.
    Langen KJ, Bartenstein P, Boecker H et al (2011) German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 50:167–173CrossRefGoogle Scholar
  25. 25.
    Langen KJ, Tatsch K, Grosu AL et al (2008) Diagnostics of cerebral gliomas with radiolabeled amino acids. Dtsch Arztebl Int 105:55–61PubMedPubMedCentralGoogle Scholar
  26. 26.
    Massager N, David P, Goldman S et al (2000) Combined magnetic resonance imaging- and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93:951–957CrossRefGoogle Scholar
  27. 27.
    Oehlke O, Mix M, Graf E et al (2016) Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme (GLIAA)—protocol of a randomized phase II trial (NOA 10/ARO 2013-1). BMC Cancer 16:769CrossRefGoogle Scholar
  28. 28.
    Pauleit D, Floeth F, Hamacher K et al (2005) O‑(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefGoogle Scholar
  29. 29.
    Pauleit D, Stoffels G, Bachofner A et al (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787CrossRefGoogle Scholar
  30. 30.
    Piroth MD, Pinkawa M, Holy R et al (2011) Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 80:176–184CrossRefGoogle Scholar
  31. 31.
    Reithmeier T, Lopez WO, Spehl TS et al (2013) Bevacizumab as salvage therapy for progressive brain stem gliomas. Clin Neurol Neurosurg 115:165–169CrossRefGoogle Scholar
  32. 32.
    Roelcke U, Wyss MT, Nowosielski M et al (2016) Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro Oncol 18:744–751CrossRefGoogle Scholar
  33. 33.
    Suchorska B, Jansen NL, Linn J et al (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Baillieres Clin Neurol 84:710–719Google Scholar
  34. 34.
    Tanaka Y, Nariai T, Momose T et al (2009) Glioma surgery using a multimodal navigation system with integrated metabolic images. J Neurosurg 110:163–172CrossRefGoogle Scholar
  35. 35.
    Vander Borght T, Asenbaum S, Bartenstein P et al (2006) EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 33:1374–1380CrossRefGoogle Scholar
  36. 36.
    Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O‑(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212PubMedGoogle Scholar
  37. 37.
    Wyss M, Hofer S, Bruehlmeier M et al (2009) Early metabolic responses in temozolomide treated low-grade glioma patients. J Neurooncol 95:87–93CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • B. Feuerecker
    • 1
  • I. Karimov
    • 1
  • W. Weber
    • 1
  • I. Yakushev
    • 1
    Email author
  1. 1.Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland

Personalised recommendations