Advertisement

Der Onkologe

, Volume 25, Issue 1, pp 60–66 | Cite as

Neue Behandlungsoptionen bei Gliomen

  • Wolfgang WickEmail author
Leitthema

Zusammenfassung

Hintergrund

Patienten mit Gliomen profitieren bereits jetzt − v. a. in molekular definierten Untergruppen (IDH-Mutation, 1p/19q-Kodeletion; IDH: Isocitrat-Dehydrogenase) − von den Standardtherapien. MGMT (O6-Methylguanin-DNA-Methyltransferase) ist der einzige relevante Biomarker für eine Therapieentscheidung pro oder kontra alkylierende Chemotherapie.

Fragestellung

Im aktuellen Übersichtsartikel sollen neue Konzepte der Immuntherapie der zielgerichteten Therapie und der Tumortherapiefelder für die Gliombehandlung diskutiert werden.

Ergebnisse

In den letzten Jahren sind Studienkonzepte und molekular zielgerichtete Behandlungen in Studien für Patienten mit IDH-Mutationen, Endothelial-Growth-Factor-Receptor(EGFR)-Überexpression, EGFRvIII-Expression, aber auch anderen definierten molekularen Läsionen im Tumorgewebe entwickelt worden. Aktuelle Therapiestudien übertragen diese in auf einzelne Biomarker ausgerichtete Studien in sog. Umbrella-Konzepte. In diesen Umbella-Konzepten werden verschiedene Therapiearme mit jeweils molekular zielgerichteten Therapien basierend auf Biomarkertests untersucht. Hauptergebnisse dieser Studien sollten neben möglicherweise profitierenden Patienten Kenntnisse über Wirk- bzw. Resistenzmechanismen der untersuchten Therapien sein. Ähnliche Untersuchungen werden für Immuntherapie mit noch sehr variablen Ansätzen der Checkpointinhibition auf der einen Seite und verschiedener Vakzinierungsverfahren einschließlich der Nutzung von CAR-Zellen (chimäre Antigenrezeptor-T-Zellen) auf der anderen Seite untersucht.

Schlussfolgerungen

Elektrische Wechselfelder stehen als eine Therapieoption für Patienten mit neu diagnostizierten Glioblastomen nach erfolgreichem Abschluss der Radiochemotherapie zur Verfügung.

Schlüsselwörter

Hirntumoren Immuntherapie Präzisionsmedizin IDH-Mutationen EGFRvIII-Expression 

New treatment options for gliomas

Abstract

Background

Patients with gliomas in molecularly defined subgroups (isocitrate dehydrogenase, IDH mutation, 1p/19q codeletion) already benefit now from standard treatments. The O6-methylguanine DNA-methyltransferase (MGMT) is the only relevant biomarker for treatment decisions for or against alkylating chemotherapy.

Purpose

In the present review article new concepts of immunotherapy and targeted approaches as well as treatment with electrical fields for gliomas are discussed.

Results

In recent years there have been efforts to develop study concepts with molecular targeted treatment for patients with gliomas harboring IDH mutations, endothelial growth factor receptor (EGFR) overexpression, EGFRv3 expression and also other defined molecular alterations in tumor tissue. Current treatment studies transfer these to studies involving single biomarkers in so-called modern umbrella designs. In these umbrella concepts a single disease entity is treated in different study groups with molecular targeted treatments based on molecular biomarker tests. Key outcomes of these trials are not only patients who benefit but also information on sensitivity or resistance mechanisms of the examined treatments. Similar trials are being designed for immunotherapies with variable approaches involving checkpoint inhibition on the one side and different vaccination approaches including the use of chimeric antigen receptor (CAR) cells on the other.

Conclusion

Alternating electrical fields are a therapeutic option available for patients with newly diagnosed glioblastoma after successful completion of chemoradiation.

Keywords

Brain tumors Immunotherapy Precision medicine IDH mutations EGFRv3 expression 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Wick gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Weller M, van den Bent M, Tonn JC et al (2017a) European Association for Neuro-Oncology guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol.  https://doi.org/10.1016/s1470-2045(17)30194-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with Glioblastoma: a randomized clinical trial. JAMA 318(23):2306–2316CrossRefGoogle Scholar
  3. 3.
    Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202CrossRefGoogle Scholar
  4. 4.
    Osswald M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98Google Scholar
  5. 5.
    Winkler F, Wick W (2018) Harmful networks in the brain and beyond. Science 359(6380):1100–1101CrossRefGoogle Scholar
  6. 6.
    Puchalski RB et al (2018) An anatomic transcriptional atlas of human glioblastoma. Science 360:660–663CrossRefGoogle Scholar
  7. 7.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  8. 8.
    Madhavan S et al (2009) Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 7:157–167CrossRefGoogle Scholar
  9. 9.
    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437CrossRefGoogle Scholar
  10. 10.
    Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401CrossRefGoogle Scholar
  11. 11.
    Quail DF, Joyce JA (2017) The Microenvironmental landscape of brain tumors. Cancer Cell 31:326–341CrossRefGoogle Scholar
  12. 12.
    Capper D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474CrossRefGoogle Scholar
  13. 13.
    Wick W et al (2014a) MGMT testing in neurooncology—a paradigm for prospects and challenges of biomarker-based treatment decisions. Nat Rev Neurol 10:372–385CrossRefGoogle Scholar
  14. 14.
    Wick W, Gorlia T, Bady P et al (2016) Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res 22:4797–4806CrossRefGoogle Scholar
  15. 15.
    Wick W, Fricke H, Junge K et al (2014b) A phase II, randomised, study of weekly APG101 + reirradiation versus reirradiation in progressive glioblastoma. Clin Cancer Res 20:6304–6313CrossRefGoogle Scholar
  16. 16.
    Sandmann T, Bourgon R, Garcia J et al (2015) Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol 33:2735–2744CrossRefGoogle Scholar
  17. 17.
    Brandes AA, Carpentier AF, Kesari S et al (2016) A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology 18(8):1146–1156CrossRefGoogle Scholar
  18. 18.
    Capper D, von Deimling A, Brandes AA et al (2017) Biomarker and Histopathology evaluation of patients with recurrent glioblastoma treated with galunisertib, lomustine, or the combination of galunisertib and lomustine. Int J Mol Sci 18(5).  https://doi.org/10.3390/ijms18050995 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liau LM, Ashkan K, Tran DD et al (2018) First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16:142CrossRefGoogle Scholar
  20. 20.
    Kessler T, Sahm F, Sadik A et al (2018) Molecular differences in IDH wildtype glioblastoma according to MGMT promoter methylation. Neuro-Oncology 20(3):367–379CrossRefGoogle Scholar
  21. 21.
    Alexander BM, Ba S, Berger MS et al (2017) GBM AGILE Network. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE. Clin Cancer Res 24(4):737–743CrossRefGoogle Scholar
  22. 22.
    Pfaff E, Kessler T, Balasubramanian GP et al (2018) Feasibility of real-time molecular profiling for patients with newly diagnosed glioblastoma without MGMT promoter-hypermethylation – the NCT Neuro Master Match (N2M2) pilot study. Neuro-Oncology 20(6):826–837CrossRefGoogle Scholar
  23. 23.
    Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumor immunity. Nature 512:324–327CrossRefGoogle Scholar
  24. 24.
    Platten M, Schilling D, Bunse T et al (2016) A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: A first-in-man multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16). J Clin Oncol 34(suppl):TPS2082CrossRefGoogle Scholar
  25. 25.
    Platten M, Schilling D, Bunse L, Wick A et al (2018) A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: A first-in-man multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16). J Clin Oncol 36(suppl; abstr 2001)Google Scholar
  26. 26.
    Weller M, Butowski N, Tran DD et al (2017b) ACT IV trial investigators. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18:1373–1385CrossRefGoogle Scholar
  27. 27.
    Reardon DA, Omuro A, Brandes AA et al (2017a) Randomized phase 3 study evaluating the efficacy and safety of Nivolumab vs Bevacizumab in patients with recurrent Glioblastoma: CheckMate 143. Neuro-Oncology 19:iii21–iii21.  https://doi.org/10.1093/neuonc/nox036.071 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wick W, Dietrich PY, Kuttruff-Coqui S et al (2018) GAPVAC-101: First-in-human trial of a highly personalized peptide vaccination approach for patients with newly diagnosed glioblastoma. J Clin Oncol 36(suppl):2000CrossRefGoogle Scholar
  29. 29.
    Reardon DA, Schuster J et al (2015) ReACT: overall survival from a randomized phase II study of Rindopepimut (CDX-110) plus Bevacizumab in relapsed Glioblastoma. Neurosurgery 62(Suppl 1):198–199CrossRefGoogle Scholar
  30. 30.
    van den Bent M, Eoli M, Sepulveda J et al (2017) First results from the randomized phase II study on depatux-m alone, depatux-m in combination with temozolomide and either temozolomide or lomustine in recurrent EGFR amplified glioblastoma: first report from INTELLANCE 2 / EORTC trial 1410. Neuro-Oncology 19(suppl. 6):vii13CrossRefGoogle Scholar
  31. 31.
    Geletneky K, Hajda J, Angelova AL et al (2017) Oncolytic H‑1 Parvovirus shows safety and signs of Immunogenic activity in a first phase I/IIa Glioblastoma trial. Mol Ther.  https://doi.org/10.1016/j.ymthe.2017.08.016 (pii: S1525–0016(17)30378-7.)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cloughesy TF, Landolfi J, Hogan DJ et al (2016) Phase 1 trial of vocimagene amiretrorepvec and 5‑fluorocytosine for recurrent high-grade glioma. Sci Transl Med 8(341):341ra75CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Neurologische Klinik & Nationales Zentrum für Tumorerkrankungen HeidelbergUniversität HeidelbergHeidelbergDeutschland
  2. 2.Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergDeutschland

Personalised recommendations