Advertisement

Der Onkologe

, Volume 25, Issue 1, pp 22–30 | Cite as

Rolle der Magnetresonanztomographie bei Gliomen

  • E. HattingenEmail author
Leitthema
  • 72 Downloads

Zusammenfassung

Hintergrund

Im Zeitalter der in den Vordergrund gestellten molekularen Hirntumordiagnostik muss sich die Bildgebung neuen Herausforderungen stellen. Hinsichtlich der für molekulargenetische Analysen erforderlichen Gewinnung von Tumorgewebe stellt sich nur noch selten die Frage, ob operiert bzw. biopsiert wird, die Magnetresonanztomographie (MRT) kann jedoch Fragen nach dem operativen Vorgehen erheblich beeinflussen. Zudem ist die MRT weiterhin Methode der Wahl in der Abgrenzung zu anderen Hirnerkrankungen und in Verlaufsuntersuchungen von Patienten mit Hirntumoren.

Diese Arbeit basiert auf eigener jahrzehntelanger Expertise in der Bildgebung der Hirntumoren und einer selektiven Literaturrecherche in der Datenbank PubMed zu den einzelnen Stichpunkten bezogen auf Gliome (MR-Perfusion, diffusionsgewichtete Bildgebung, „diffusion weighted imaging“ [DWI], MR-Spektroskopie, „chemical exchange saturation transfer“ [CEST] usw.).

Methoden

Die MRT ist Goldstandard in der bildgebenden Hirntumordiagnostik. Fortschritte von Technik und Methodik haben die diagnostischen Möglichkeiten stetig erweitert, dennoch lässt die MRT bis heute relevante Fragestellungen unbeantwortet. Funktionelle Methoden wie die MR-Perfusion, Diffusion und Spektroskopie gewähren wie die PET (Positronen-Emissions-Tomographie) einen tieferen Einblick in die Tumorbiologie als die Standard-MRT, sind aber z. T. speziellen Zentren vorbehalten. Tumormorphologie, Aggressivität und funktionell-anatomische Lage der Hirntumoren sind jedoch auch auf Standard-MR-Sequenzen zu erkennen.

Schlüsselwörter

Hirntumoren MR-Perfusion MR-Spektroskopie Metabolische Bildgebung Diffusionsgewichtete Bildgebung 

Abkürzungen

DSC

„dynamic susceptibility contrast“

DTI

„diffusion tensor imaging“

DWI

„diffusion weighted imaging“

MRT

Magnetresonanztomographie

rCBV

„regional cerebral blood volume“

SWI

„susceptibility weighted imaging“

Role of magnetic resonance imaging in gliomas

Abstract

Background

In the era when molecular brain tumor diagnostics predominate, imaging procedures must face up to new challenges. With respect to the acquisition of the tumor tissue necessary for molecular genetic analyses, the question of whether surgery or biopsy should be carried out only rarely occurs; however, magnetic resonance imaging (MRI) can substantially influence the question of the operative approach. Additionally, MRI is still the method of choice for the differentiation from other brain diseases and for monitoring the course of patients with brain diseases. This article is based on the decades of expertise of the author in imaging of brain tumors and a selective literature search in the PubMed databank on individual key points on gliomas, such as MR perfusion, diffusion-weighted imaging, MR spectroscopy and chemical exchange saturation transfer (CEST).

Methods

The use of MRI is the gold standard in the imaging diagnostics of brain tumors. Advances in technology and methods have continuously expanded the diagnostic options; nevertheless, even now MRI leaves relevant questions unanswered. Functional methods, such as MR perfusion, diffusion and spectroscopy as well as positron emission tomogaphy (PET) enable a deeper insight into tumor biology than standard MRI but are partially reserved for specialized centers. Tumor morphology, aggressiveness and functional anatomical localisation of brain tumors can, however, also be recognized on standard MR sequences.

Keywords

Brain tumors MR perfusion MR spectroscopy Metabolic imaging Diffusion-weighted imaging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

E. Hattingen gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anzalone N, Castellano A, Cadioli M et al (2018) Brain Gliomas: Multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Radiology 22:170362Google Scholar
  2. 2.
    Arevalo-Perez J, Peck KK et al (2015) Dynamic contrast-enhanced perfusion MRI and diffusion-weighted imaging in grading of gliomas. J Neuroimaging 25:792–798CrossRefGoogle Scholar
  3. 3.
    Bähr O, Harter PN, Weise LM, al at (2014) Sustained focal antitumor activity of bevacizumab in recurrent glioblastoma. Baillieres Clin Neurol 83:227–234Google Scholar
  4. 4.
    Blasel S, Zagorcic A, Jurcoane A et al (2016) Perfusion MRI in the evaluation of suspected Glioblastoma recurrence. J Neuroimaging 26:116–123CrossRefGoogle Scholar
  5. 5.
    De Coene B, Hajnal JV, Gatehouse P et al (1992) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13:1555–1564PubMedGoogle Scholar
  6. 6.
    Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2‑hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629CrossRefGoogle Scholar
  7. 7.
    Ding Y, Xing Z, Liu B et al (2014) Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav 4:841–849CrossRefGoogle Scholar
  8. 8.
    Delgado FA, Nilsson M, van Westen D, Delgado FA (2018) Glioma grade discrimination with MR diffusion kurtosis imaging: a meta-analysis of diagnostic accuracy. Radiology 287:119–127CrossRefGoogle Scholar
  9. 9.
    Fathi Kazerooni A, Nabil M et al (2018) Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI. J Magn Reson Imaging 48:938–950CrossRefGoogle Scholar
  10. 10.
    Federau C, Cerny M, Roux M et al (2017) IVIM perfusion fraction is prognostic for survival in brain glioma. Clin Neuroradiol 27:485–492CrossRefGoogle Scholar
  11. 11.
    Harris RJ, Yao J, Chakhoyan A, Raymond C et al (2018) Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI). Magn Reson Med 80(5):1962–1978CrossRefGoogle Scholar
  12. 12.
    Jiang R, Du FZ, He C et al (2014) The value of diffusion tensor imaging in differentiating high-grade gliomas from brain metastases: a systematic review and meta-analysis. PLoS ONE 9(11):e112550CrossRefGoogle Scholar
  13. 13.
    Kong L, Chen H, Yang Y, Chen L (2017) A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol 72:255–261CrossRefGoogle Scholar
  14. 14.
    Law M, Young R, Babb J et al (2017) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 28:761–766Google Scholar
  15. 15.
    Li F, Shi W, Wang D et al (2016) Evaluation of histopathological changes in the microstructure at the center and periphery of glioma tumors using diffusional kurtosis imaging. Clin Neurol Neurosurg 151:120–127CrossRefGoogle Scholar
  16. 16.
    Liang J, Liu D, Gao P et al (2018) Diagnostic values of DCE-MRI and DSC-MRI for differentiation between high-grade and low-grade Gliomas: a comprehensive eta-analysis. Acad Radiol 25:338–348CrossRefGoogle Scholar
  17. 17.
    Liu X, Tian W, Kolar B (2011) MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro Oncol 13:447–455CrossRefGoogle Scholar
  18. 18.
    Lu H, Pollack E, Young R, Babb JS et al (2008) Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. AJNR Am J Neuroradiol 29:373–378CrossRefGoogle Scholar
  19. 19.
    Melhem ER, Itoh R (2001) Effect of T1 relaxation time on lesion contrast enhancement in flair MR imaging: a study using computer-generated brain maps. AJR Am J Roentgenol 176:537–539CrossRefGoogle Scholar
  20. 20.
    Nasseri M, Gahramanov S, Netto JP et al (2014) Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol 16:1146–1154CrossRefGoogle Scholar
  21. 21.
    Paech D, Windschuh J, Oberhollenzer J et al (2018) Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multi-pool CEST MRI at 7.0 Tesla. Neuro Oncol.  https://doi.org/10.1093/neuonc/noy073 CrossRefPubMedGoogle Scholar
  22. 22.
    Park MJ, Kim HS, Jahng GH et al (2009) Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 30:1402–1408CrossRefGoogle Scholar
  23. 23.
    Raab P, Hattingen E, Franz K et al (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254:876–881CrossRefGoogle Scholar
  24. 24.
    Raja R, Sinha N, Saini J (2016) Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology 58:1217–1231CrossRefGoogle Scholar
  25. 25.
    Rieger J, Bähr O, Müller K et al (2010) Bevacizumab-induced diffusion restricted lesions in malignant glioma patients. J Neurooncol 99:49–56CrossRefGoogle Scholar
  26. 26.
    Senft C, Hattingen E, Pilatus U et al (2009) Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery 65:908–913CrossRefGoogle Scholar
  27. 27.
    Scott JN, Brasher PM, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Baillieres Clin Neurol 59:947–949Google Scholar
  28. 28.
    Tan Y, Zhang H, Zhao RF et al (2016) Comparison of the values of MRI diffusion kurtosis imaging and diffusion tensor imaging in cerebral astrocytoma grading and their association with aquaporin-4. Neurol India 64:265–272CrossRefGoogle Scholar
  29. 29.
    Usinskiene J, Ulyte A, Bjørnerud A et al (2016) Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 58:339–350CrossRefGoogle Scholar
  30. 30.
    Young RJ, Knopp EA (2006) Brain MRI: tumor evaluation. J Magn Reson Imaging 24:709–724 (Review)CrossRefGoogle Scholar
  31. 31.
    Zach L, Guez D, Last D et al (2015) Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro Oncol 17:457–465CrossRefGoogle Scholar
  32. 32.
    Zhang L, Min Z, Tang M et al (2017) The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: Evidence from a meta-analysis. J Neurol Sci 373:9–15CrossRefGoogle Scholar
  33. 33.
    Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade Gliomas and detection of tumor proliferation using APT contrast fitted from Z‑spectrum. Mol Imaging Biol 20(4):623–631CrossRefGoogle Scholar
  34. 34.
    Zimny A, Zińska L, Bladowska J et al (2013) Intracranial lesions with high signal intensity on T1-weighted MR images—review of pathologies. Pol J Radiol 78:36–46CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für NeuroradiologieUniklinikum Frankfurt am MainFrankfurtDeutschland

Personalised recommendations