Advertisement

Der Onkologe

, Volume 25, Issue 5, pp 411–419 | Cite as

Prophylaxe des Vulva- und des Vaginalkarzinoms und ihrer Vorstufen

  • M. HamplEmail author
  • C. Dannecker
Leitthema
  • 149 Downloads

Zusammenfassung

Hintergrund

Vulva- und Vaginalkarzinome sind zunehmend diagnostizierte Tumorentitäten in Deutschland. Vulva- und Vaginalkarzinome entstehen über zwei unterschiedliche pathogenetische Mechanismen: Zum einen kann eine persistierende Infektion mit dem humanen Papillomvirus (HPV, v. a. Typ 16, 31, 33) über eine undifferenzierte vulväre/vaginale intraepitheliale Neoplasie (VIN/VAIN) zum invasiven Vulva‑/Vaginalkarzinom führen. Diese Tumoren finden sich eher bei jüngeren Frauen. Davon abzugrenzen ist das Vulvakarzinom der älteren Frauen, das auf dem Boden einer chronischen Hauterkrankung (z. B. Lichen sclerosus et atrophicus, LSA) über Mutationen im Tumorsuppressorgen p53 entsteht. Auch beim Vaginalkarzinom ist einer der Risikofaktoren ein Lichen sclerosus oder Lichen planus, diese Tumoren sind HPV-negativ. Daneben gibt es eine ganze Reihe von Tumoren, deren Ursache nicht bekannt ist.

Fragestellung

Gibt es primäre oder sekundäre Präventionsmaßnahmen, die die Entstehung dieser Tumoren verhindern können?

Ergebnisse

Die HPV-induzierten Vulva- und Vaginalkarzinome können zu einem bedeutenden Teil durch eine HPV-Impfung von HPV-naiven Frauen primär verhindert werden. Der nonavalente Impfstoff deckt die relevanten HPV-Typen 16, (18), 31 und 33 mit einer Wirksamkeit von 97 % ab, der bivalente Impfstoff hat eine vergleichbar hohe Effektivität aber nur für HPV16 und HPV18.

Ob das licheninduzierte Vulva‑/Vaginalkarzinom durch eine konsequente lokale Dauertherapie mit Kortison oder Calcineurininhibitoren primär präventiv verhindert werden kann wird diskutiert. Erste Daten, die darauf hindeuten, liegen vor.

Schlüsselwörter

Immunisierung Präventive Gesundheitsmaßnahmen Humanes Papillomvirus Primärprävention Impfung Kortison 

Prophylaxis of vulvar and vaginal cancer and their precursors

Abstract

Background

Vulvar and vaginal carcinomas are increasingly diagnosed tumor entities in Germany. Vulvar and vaginal carcinomas arise via two different pathogenetic mechanisms: Persistent infection with the human papillomavirus (HPV; especially types 16, 31, 33) can lead to invasive vulvar/vaginal carcinomas via undifferentiated vulvar/vaginal intraepithelial neoplasia (VIN/VAIN). These tumors are more likely to be found in younger women. These tumors have to be distinguished from vulvar cancer in older women, which results from mutations in the tumor suppressor gene p53 on the background of a chronic skin disease (e.g., lichen sclerosus et atrophicus, LSA). One of the risk factors for vaginal carcinoma is also lichen sclerosis or lichen planus; these tumors are HPV negative. There are also a number of tumors whose cause is unknown.

Objective

Are there are primary or secondary preventive measurements to help to reduce or erase the induction of vulvar cancer?

Results

HPV-induced vulvar and vaginal cancers can be prevented primarily by HPV vaccination of HPV-naive young women. The nonavalent vaccine covers the relevant HPV types 16, (18), 31, and 33 with an efficacy of 97%; the bivalent vaccine has comparably high efficiencies but only for HPV 16 and 18. Whether lichen sclerosis-induced vulvar/vaginal carcinoma can be prevented primarily by preventive local long-term therapy with locally applied cortisone or calcineurin inhibitors is discussed. First data suggest that this is the case.

Keywords

Immunization Preventive health services Human papilloma virus Primary prevention Vaccination Cortisone 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Hampl erhält Honorare in Form von Reisekosten und Referentengehälter von MSD, Astra Zeneca, Gedeon Richter, teva. Des Weiteren Autorengehälter für Artikel und Buchbeiträge von u. a. Elsevier, Springer, Thieme, Omnimed. C. Dannecker erhält Honorare in Form von Reisekosten und Referentengehälter von MSD, GSK.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    WHO (2007) Human Papillomavirus and HPV vaccines: technical information for policy-makers and health professionals. WHO press, GenfGoogle Scholar
  2. 2.
    zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384(2):260–265CrossRefGoogle Scholar
  3. 3.
    Klussmann JP (2001) Prevalence, distribution, and viral load of human Papillomavirus 16 DNA in tonsillar carcinomas. Cancer 92:2875–2884CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Al-Ghamdi A et al (2002) Vulvar squamous cell carcinoma in young women: a clinicopathologic study of 21 cases. Gynecol Oncol 84(1):94–101CrossRefGoogle Scholar
  6. 6.
    Baandrup L et al (2011) In situ and invasive squamous cell carcinoma of the vulva in Denmark 1978–2007—a nationwide population-based study. Gynecol Oncol 122(1):45–49CrossRefGoogle Scholar
  7. 7.
    Carter J et al (1993) Invasive vulvar tumors in young women—a disease of the immunosuppressed? Gynecol Oncol 51(3):307–310CrossRefGoogle Scholar
  8. 8.
    Hampl M et al (2006) A case of a pT3, HPV 52-positive vulvar carcinoma in an 18-year-old woman. Gynecol Oncol 101(3):530–533CrossRefGoogle Scholar
  9. 9.
    Jones RW, Baranyai J, Stables S (1997) Trends in squamous cell carcinoma of the vulva: the influence of vulvar intraepithelial neoplasia. Obstet Gynecol 90(3):448–452CrossRefGoogle Scholar
  10. 10.
    Joura EA et al (2000) Trends in vulvar neoplasia. Increasing incidence of vulvar intraepithelial neoplasia and squamous cell carcinoma of the vulva in young women. J Reprod Med 45(8):613–615PubMedGoogle Scholar
  11. 11.
    Judson PL et al (2006) Trends in the incidence of invasive and in situ vulvar carcinoma. Obstet Gynecol 107(5):1018–1022CrossRefGoogle Scholar
  12. 12.
    Messing MJ, Gallup DG (1995) Carcinoma of the vulva in young women. Obstet Gynecol 86(1):51–54CrossRefGoogle Scholar
  13. 13.
    Hampl M et al (2008) New aspects of vulvar cancer: changes in localization and age of onset. Gynecol Oncol 109(3):340–345CrossRefGoogle Scholar
  14. 14.
    Halonen P et al (2017) Lichen sclerosus and risk of cancer. Int J Cancer 140(9):1998–2002CrossRefGoogle Scholar
  15. 15.
    Lee A, Bradford J, Fischer G (2015) Long-term management of adult vulvar lichen Sclerosus: a prospective cohort study of 507 women. Jama Dermatol 151(10):1061–1067CrossRefGoogle Scholar
  16. 16.
    de Sanjose S et al (2013) Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. Eur J Cancer 49(16):3450–3461CrossRefGoogle Scholar
  17. 17.
    Brinton LA et al (1990) Case-control study of cancer of the vulva. Obstet Gynecol 75(5):859–866PubMedGoogle Scholar
  18. 18.
    Monk BJ et al (1995) Prognostic significance of human papillomavirus DNA in vulvar carcinoma. Obstet Gynecol 85(5 Pt 1):709–715CrossRefGoogle Scholar
  19. 19.
    Madsen BS et al (2008) Risk factors for invasive squamous cell carcinoma of the vulva and vagina—population-based case-control study in Denmark. Int J Cancer 122(12):2827–2834CrossRefGoogle Scholar
  20. 20.
    Kutlubay Z et al (2013) Anogenital malignancies and premalignancies: facts and controversies. Clin Dermatol 31(4):362–373CrossRefGoogle Scholar
  21. 21.
    Rufforny I et al (2005) Human papillomavirus infection and p16(INK4a) protein expression in vulvar intraepithelial neoplasia and invasive squamous cell carcinoma. J Low Genit Tract Dis 9(2):108–113CrossRefGoogle Scholar
  22. 22.
    Alemany L et al (2014) Large contribution of human papillomavirus in vaginal neoplastic lesions: a worldwide study in 597 samples. Eur J Cancer 50(16):2846–2854CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Schiller JT, Lowy DR (2012) Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol 10(10):681–692CrossRefGoogle Scholar
  25. 25.
    Robert Koch Institut (2017) HPV Impfung. Epidemiol Bull 1:7–8Google Scholar
  26. 26.
    Harper DM et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765CrossRefGoogle Scholar
  27. 27.
    Villa LL et al (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6(5):271–278CrossRefGoogle Scholar
  28. 28.
    Villa LL et al (2006) High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer 95(11):1459–1466CrossRefGoogle Scholar
  29. 29.
    Romanowski B et al (2009) Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 374(9706):1975–1985CrossRefGoogle Scholar
  30. 30.
    Paavonen J et al (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374(9686):301–314CrossRefGoogle Scholar
  31. 31.
    Joura EA et al (2007) Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 369(9574):1693–1702CrossRefGoogle Scholar
  32. 32.
    Ault KA (2007) Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet 369(9576):1861–1868CrossRefGoogle Scholar
  33. 33.
    McCormack PL, Joura EL (2010) Quadrivalent human Papillomavirus (types 6, 11, 16, 18) recombinant vaccine (Gardasil®). Drugs 70(18):2449–2474.  https://doi.org/10.2165/11204920-000000000-00000 CrossRefPubMedGoogle Scholar
  34. 34.
    Joura EA et al (2015) A 9‑valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372(8):711–723CrossRefGoogle Scholar
  35. 35.
    Huh WK et al (2017) Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16–26 years: a randomised, double-blind trial. Lancet 390(10108):2143–2159CrossRefGoogle Scholar
  36. 36.
    Hampl M et al (2006) Effect of human papillomavirus vaccines on vulvar, vaginal, and anal intraepithelial lesions and vulvar cancer. Obstet Gynecol 108(6):1361–1368CrossRefGoogle Scholar
  37. 37.
    Insinga RP et al (2008) A systematic review of the prevalence and attribution of human papillomavirus types among cervical, vaginal, and vulvar precancers and cancers in the United States. Cancer Epidemiol Biomarkers Prev 17(7):1611–1622CrossRefGoogle Scholar
  38. 38.
    De Vuyst H et al (2009) Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer 124(7):1626–1636CrossRefGoogle Scholar
  39. 39.
    Joura EA et al (2012) Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ e1401:344Google Scholar
  40. 40.
    Robert Koch Institut (2014) Humane Papillomviren (HPV). Epidemiol Bull 34:315–316Google Scholar
  41. 41.
    Cooper SM et al (2008) The association of lichen sclerosus and erosive lichen planus of the vulva with autoimmune disease: a case-control study. Arch Dermatol 144(11):1432–1435PubMedGoogle Scholar
  42. 42.
    Terlou A et al (2012) An autoimmune phenotype in vulvar lichen sclerosus and lichen planus: a Th1 response and high levels of microRNA-155. J Invest Dermatol 132(3):658–666CrossRefGoogle Scholar
  43. 43.
    Sherman V et al (2010) The high rate of familial lichen sclerosus suggests a genetic contribution: an observational cohort study. J Eur Acad Dermatol Venereol 24(9):1031–1034PubMedGoogle Scholar
  44. 44.
    Chi CC et al (2017) Updated evidence-based (S2e) European Dermatology Forum guideline on topical corticosteroids in pregnancy. J Eur Acad Dermatol Venereol 31(5):761–773CrossRefGoogle Scholar
  45. 45.
    Kirtschig G et al (2015) Evidence-based (S3) guideline on (anogenital) Lichen sclerosus. J Eur Acad Dermatol Venereol 29(10):e1–43CrossRefGoogle Scholar
  46. 46.
    Kirtschig G et al (2017) Evidence-based (S3) guideline on (anogenital) Lichen sclerosus. J Eur Acad Dermatol Venereol 31(2):e81–e83CrossRefGoogle Scholar
  47. 47.
    Halonen P et al (2018) Cancer risk of Lichen planus: A cohort study of 13,100 women in Finland. Int J Cancer 142(1):18–22CrossRefGoogle Scholar
  48. 48.
    Eva LJ (2012) Screening and follow up of vulval skin disorders. Best Pract Res Clin Obstet Gynaecol 26(2):175–188CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Frauenklinik des Universitätsklinikums DüsseldorfHeinrich-Heine-UniversitätDüsseldorfDeutschland
  2. 2.Klinik und Poliklinik für Frauenheilkunde und GeburtshilfeKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations