Der Onkologe

, Volume 23, Issue 10, pp 845–852 | Cite as

Psychoneuroimmunologie und Krebs

Neuere Forschungsergebnisse zu Katecholaminen, β‑Blockern und klinischen Implikationen


Es verdichten sich die Hinweise, dass psychische Belastungen (Distress) den Verlauf von Krebserkrankungen beeinflussen können. Bei der Aufklärung möglicher Pathomechanismen hat die Erforschung des autonomen Nervensystems mit dem Fokus auf Katecholamine und β‑Blocker die bisher wichtigsten Ergebnisse erbracht. In diesem Beitrag sollen die Entwicklung psychoneuroimmunologischer Arbeitsmodelle nachvollzogen, aktuelle Forschungsschwerpunkte skizziert und klinische Implikationen diskutiert werden.


Stresshormone Psychische Belastungen Pathomechanismen Autonomes Nervensystem Tumoren 

Psychoneuroimmunology (PNI) and cancer

Latest research results on catecholamines, beta blockers and clinical implications


Results from recent studies indicate that psychological distress has an influence on the course of cancer. For the clarification of possible underlying pathomechisms, studies on the autonomic nervous system focusing on catecholamines and beta blockers were most effective in shedding light on this aspect. This article reviews the evolution of psychoneuroimmunological working models and sketches recent topics of research. The clinical implications of the results are also discussed.


Stress hormones Psychological distress Pathomechanisms Autonomic nervous system Tumors 


  1. 1.
    Ader R, Cohen N (1975) Behaviorally conditioned immunosuppression. Psychosom Med 37:333–340CrossRefPubMedGoogle Scholar
  2. 2.
    Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS et al (2015) Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget 6:4266–4273CrossRefPubMedGoogle Scholar
  3. 3.
    Battacharyya GS, Babu KG, Bondarde SA et al (2015) Effect of coadministered beta blocker and COX-2 inhibitors to patients with pancreatic cancer prior to receiving albumin-bound paclitaxel. American Society of Clinical Oncology 12th Annual Gastrointestinal (GI) Cancers Symposium, San Francisco.Google Scholar
  4. 4.
    Batty GD, Russ TC, Stamatakis E et al (2017) Psychological distress in relation to site specific cancer mortality: pooling of unpublished data from 16 prospective cohort studies. BMJ 356:j108CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ben-Eliyahu S, Shakhar G, Rosenne E et al (1999) Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology 91:732–740CrossRefPubMedGoogle Scholar
  6. 6.
    Bharati SJ, Chowdhury T, Bergese SD et al (2016) Anesthetics impact on cancer recurrence: what do we know? J Cancer Res Ther 12:464–468CrossRefPubMedGoogle Scholar
  7. 7.
    Blomberg BB, Alvarez JP, Diaz A et al (2009) Psychosocial adaptation and cellular immunity in breast cancer patients in the weeks after surgery: an exploratory study. J Psychosom Res 67:369–376CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bundesärztekammer, Kassenärztliche Bundesvereinigung (2015) Betablocker könnten Überleben bei Ovarialkarzinom verlängern. Zugegriffen: 01.08.2017Google Scholar
  9. 9.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27CrossRefPubMedGoogle Scholar
  10. 10.
    Choi MJ, Cho KH, Lee S et al (2015) hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene 34:3402–3412CrossRefPubMedGoogle Scholar
  11. 11.
    Choy C, Raytis JL, Smith DD et al (2016) Inhibition of beta2-adrenergic receptor reduces triple-negative breast cancer brain metastases: the potential benefit of perioperative beta-blockade. Oncol Rep 35:3135–3142CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clinicaltrials.Gov. (2014) Beta-blocker/ovarian. Zugegriffen: 01.08.2017Google Scholar
  13. 13.
    Clinicaltrials.Gov. (2014) Perioperative administration of COX 2 inhibitors and beta blockers to women undergoing breast cancer surgery. Zugegriffen: 01.08.2017Google Scholar
  14. 14.
    Clinicaltrials.Gov (2014) Therapeutic targeting of stress factors in ovarian cancer patients. Zugegriffen: 01.08.2017Google Scholar
  15. 15.
    Clinicaltrials.Gov. (2011) β‑adrenergic Blocker and a COX2 Inhibitor for Prevention of Colorectal Cancer Recurrence. Zugegriffen: 01.08.2017Google Scholar
  16. 16.
    Cohen S (2004) Social relationships and health. Am Psychol 59:676–684CrossRefPubMedGoogle Scholar
  17. 17.
    Cole SW, Nagaraja AS, Lutgendorf SK et al (2015) Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 15:563–572CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eskander R, Bessonova L, Chiu C (2012) Beta blocker use and ovarian cancer survival: a retrospective cohort study. Gynecol Oncol 127(1):S21Google Scholar
  19. 19.
    Forget P, Machiels JP, Coulie PG et al (2013) Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or diclofenac are prognostic factors in different cohorts of patients undergoing breast, lung, and kidney cancer surgery. Ann Surg Oncol 20(Suppl 3):S650–S660CrossRefPubMedGoogle Scholar
  20. 20.
    Gotlieb N, Rosenne E, Matzner P et al (2015) The misleading nature of in vitro and ex vivo findings in studying the impact of stress hormones on NK cell cytotoxicity. Brain Behav Immun 45:277–286CrossRefPubMedGoogle Scholar
  21. 21.
    Hadden JW, Hadden EM, Middleton E Jr. (1970) Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol 1:583–595CrossRefPubMedGoogle Scholar
  22. 22.
    Hefner J, Csef H (2016) The clinical relevance of beta blockers in ovarian carcinoma: a systematic review. Geburtshilfe Frauenheilkd 76:1050–1056CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hefner J, Csef H (2011) Psychoneuroimmunologie und Krebs. Neue Ergebnisse zu psychosozialen Einflüssen auf Tumorerkrankungen. Onkologe 17:839–850CrossRefGoogle Scholar
  24. 24.
    Hefner J, Csef H, Kunzmann V (2014) Stress and pancreatic carcinoma—beta-adrenergic signaling and tumor biology. Dtsch Med Wochenschr 139:334–338CrossRefPubMedGoogle Scholar
  25. 25.
    Hefner J, Schwarz E, Zentis A et al The effect of pre-transplant distress on immune reconstitution among myeloma patients undergoing first autologous hematopoietic cell transplantation. Bone Marrow Transplantation, in VorbereitungGoogle Scholar
  26. 26.
    Hobfoll SE, Gerhart JI, Zalta AK et al (2015) Posttraumatic stress symptoms predict impaired neutrophil recovery in stem cell transplant recipients. Psychooncology 24:1529–1535CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Horowitz M, Neeman E, Sharon E et al (2015) Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 12:213–226CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421CrossRefPubMedGoogle Scholar
  29. 29.
    Knight JM, Moynihan JA, Lyness JM et al (2014) Peri-transplant psychosocial factors and neutrophil recovery following hematopoietic stem cell transplantation. PLOS ONE 9:e99778CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lemeshow S, Sorensen HT, Phillips G et al (2011) beta-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 20(10):2273–2279. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lutgendorf SK, Andersen BL (2015) Biobehavioral approaches to cancer progression and survival: mechanisms and interventions. Am Psychol 70:186–197CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lutgendorf SK, Degeest K, Sung CY et al (2009) Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain Behav Immun 23:176–183CrossRefPubMedGoogle Scholar
  33. 33.
    Lutgendorf SK, Johnsen EL, Cooper B et al (2002) Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer 95:808–815CrossRefPubMedGoogle Scholar
  34. 34.
    Martin LA, Davies GL, Weigel MT et al (2010) Pre-surgical study of the biological effects of the selective cyclo-oxygenase-2 inhibitor celecoxib in patients with primary breast cancer. Breast Cancer Res Treat 123:829–836CrossRefPubMedGoogle Scholar
  35. 35.
    Mcgregor BA, Syrjala KL, Dolan ED et al (2013) The effect of pre-transplant distress on immune reconstitution among adult autologous hematopoietic cell transplantation patients. Brain Behav Immun 30(Suppl):S142–S148CrossRefPubMedGoogle Scholar
  36. 36.
    Nagaraja AS, Sadaoui NC, Lutgendorf SK et al (2013) beta-blockers: a new role in cancer chemotherapy? Expert Opin Investig Drugs 22:1359–1363CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rangarajan S, Enserink JM, Kuiperij HB et al (2003) Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2‑adrenergic receptor. J Cell Biol 160:487–493CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schmidt SA, Schmidt M (2016) Beta-blockers and improved survival from ovarian cancer: new miracle treatment or another case of immortal person-time bias? Cancer 122:324–325CrossRefPubMedGoogle Scholar
  39. 39.
    Sephton SE, Dhabhar FS, Keuroghlian AS et al (2009) Depression, cortisol, and suppressed cell-mediated immunity in metastatic breast cancer. Brain Behav Immun 23:1148–1155CrossRefPubMedGoogle Scholar
  40. 40.
    Shaashua L, Shabat-Simon M, Haldar R et al (2017) Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res 3:4651–4661CrossRefGoogle Scholar
  41. 41.
    Sood AK, Armaiz-Pena GN, Halder J et al (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 120:1515–1523CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sood AK, Bhatty R, Kamat AA et al (2006) Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 12:369–375CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sooriakumaran P, Coley HM, Fox SB et al (2009) A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 29:1483–1488PubMedGoogle Scholar
  44. 44.
    Sorski L, Melamed R, Matzner P et al (2016) Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through beta-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun 58:91–98CrossRefPubMedGoogle Scholar
  45. 45.
    Thaker PH, Han LY, Kamat AA et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944CrossRefPubMedGoogle Scholar
  46. 46.
    Thaker PH, Urbauer DL, Sood AK (2016) Reply to beta blockers in epithelial ovarian cancer and beta-blockers and improved survival from ovarian cancer: New miracle treatment or another case of immortal person-time bias? Cancer 122:325–326CrossRefPubMedGoogle Scholar
  47. 47.
    Vandewalle B, Revillion F, Lefebvre J (1990) Functional beta-adrenergic receptors in breast cancer cells. J Cancer Res Clin Oncol 116:303–306CrossRefPubMedGoogle Scholar
  48. 48.
    von Lutterotti N (2015) Betablocker zur Krebstherapie? Frankfurter Allgemeine Zeitung. Zugegriffen: 01.08.2017Google Scholar
  49. 49.
    Watkins JL, Thaker PH, Nick AM et al (2015) Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121:3444–3451CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang C, Wenger T, Mattern J et al (2007) Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol Ther 6:278–287CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang D, Ma Q, Shen S et al (2009) Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas 38:94–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Medizinische Klinik und Poliklinik II, Arbeitsbereich Psychosomatische Medizin und PsychotherapieUniversitätsklinik WürzburgWürzburgDeutschland

Personalised recommendations