Advertisement

Der Onkologe

, Volume 23, Issue 3, pp 177–184 | Cite as

Komplementäre Medizin und Prävention

Von Ernährung über Nahrungsergänzungsmittel zu körperlicher Aktivität
  • T. Schmidt
  • T. Kubin
  • B. Barnes
Leitthema
  • 389 Downloads

Zusammenfassung

Hintergrund

Die Auswirkungen von Lebensstilfaktoren wie körperliche Aktivität und Ernährung auf Entstehung und Verlauf von Krebs ist seit über 60 Jahren Gegenstand klinischer und epidemiologischer Forschung. Obwohl viele Fragen noch offen bleiben, ermöglichen aktuelle Studien evidenzbasierte Empfehlungen für die primäre und tertiäre Krebsprävention.

Methoden

Im Rahmen einer Literaturrecherche wurden Übersichtsarbeiten zum Einfluss von körperlicher Aktivität und Ernährung auf Krebs sowie Studien zu aktuellen Entwicklungen in diesen Themengebieten identifiziert.

Ergebnisse

Körperliche Aktivität trägt zur primären Prävention von Kolonkarzinomen, postmenopausalem Brustkrebs und Endometriumkarzinomen bei. Der vermehrte Verzehr von rotem Fleisch und verarbeiteten Fleischprodukten ist mit einer Erhöhung des Krebsrisikos assoziiert. Eine obst-, gemüse- und ballaststoffreiche Ernährung hängt demgegenüber mit einer Senkung des Krebsrisikos zusammen. Körperliche Aktivität kann während jeder Therapiephase unter Berücksichtigung der individuellen Probleme durchgeführt werden. Studienergebnisse berichten von verbesserter Leistungsfähigkeit und Lebensqualität, einer Verminderung von therapieassoziierten Nebenwirkungen sowie Senkung des Rezidivrisikos durch eine körperliche Aktivität.

Schlussfolgerungen

Evidenzbasierte Empfehlungen zur Krebsprävention durch körperliche Aktivität und Ernährung sollen in die Behandlung von onkologischen Patienten und in die Versorgung der Allgemeinbevölkerung integriert werden. Innovative Programme wie „Jetzt aktiv!“, die kompetente Beratung bezüglich Ernährung und körperlicher Aktivität nach einer Krebserkrankung anbieten, werden an Krebsberatungsstellen entwickelt und erfolgreich eingesetzt.

Schlüsselwörter

Krebs Nahrungsmittel Sport Lebensstil Risikoreduktion 

Complementary medicine and prevention

From nutrition and nutritional supplements to physical activity

Abstract

Background

The influence of lifestyle factors, such as physical activity and nutrition, in the development and progression of cancer has been the subject of clinical and epidemiological research for more than 60 years. Although many questions remain unanswered, recent studies allow evidence-based recommendations for primary and tertiary cancer prevention.

Methods

A literature search was conducted to identify comprehensive reviews on the effects of physical activity and nutrition on cancer as well as recent studies covering current developments in these fields.

Results

Physical activity contributes to the primary prevention of cancer of the colon, postmenopausal breast cancer in women and endometrial cancer. High consumption of red and processed meats is associated with an increased risk of cancer, whereas diets rich in fruits, vegetables and fiber are associated with a decreased risk of cancer. Under consideration of the individual situation, physical activity can be applied during every phase of cancer therapy. Studies report improved performance and quality of life, reduced therapy-associated side effects and lowered risk of recurrence through physical activity.

Conclusions

Evidence-based recommendations on cancer prevention through physical activity and nutrition should be integrated into treatment plans for oncology patients as well as in health care services for the general population. Innovative programs that provide competent advice on nutrition and physical activity after cancer are being pioneered at cancer information centers such as the “Jetzt aktiv!” program in Bremen and Hamburg.

Keywords

Cancer Nutrition Sport Lifestyle Risk reduction 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Schmidt, T. Kubin und B. Barnes geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abar L, Vieira AR, Aune D et al (2016) Blood concentrations of carotenoids and retinol and lung cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Cancer Med 5:2069–2083CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15:617–631CrossRefPubMedGoogle Scholar
  3. 3.
    Baumann FT, Kraut L, Schule K et al (2010) A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant 45:355–362CrossRefPubMedGoogle Scholar
  4. 4.
    Blanchard CM, Stein K, Courneya KS (2010) Body mass index, physical activity, and health-related quality of life in cancer survivors. Med Sci Sports Exerc 42:665–671CrossRefPubMedGoogle Scholar
  5. 5.
    Bouvard V, Loomis D, Guyton KZ et al (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 16:1599–1600CrossRefPubMedGoogle Scholar
  6. 6.
    Bradbury KE, Appleby PN, Key TJ (2014) Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 100(Suppl 1):S398–S394Google Scholar
  7. 7.
    Chan DS, Lau R, Aune D et al (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLOS ONE 6:e20456CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Courneya KS, Segal RJ, Mackey JR et al (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25:4396–4404CrossRefPubMedGoogle Scholar
  9. 9.
    Cross AJ, Sinha R (2004) Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen 44:44–55CrossRefPubMedGoogle Scholar
  10. 10.
    Demark-Wahnefried W, Rogers LQ, Alfano CM et al (2015) Practical clinical interventions for diet, physical activity, and weight control in cancer survivors. CA Cancer J Clin 65:167–189CrossRefPubMedGoogle Scholar
  11. 11.
    Friedenreich CM (2011) Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res 188:125–139CrossRefPubMedGoogle Scholar
  12. 12.
    Friedenreich CM, Neilson HK, Lynch BM (2010) State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer 46:2593–2604CrossRefPubMedGoogle Scholar
  13. 13.
    Friedenreich CM, Wang Q, Neilson HK et al (2016) Physical activity and survival after prostate cancer. Eur Urol 70:576. doi: 10.1016/j.eururo.2015.12.032 CrossRefPubMedGoogle Scholar
  14. 14.
    Ganz PA, Kwan L, Castellon SA et al (2013) Cognitive complaints after breast cancer treatments: examining the relationship with neuropsychological test performance. J Natl Cancer Inst 105:791–801CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Haenszel W, Kurihara M (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 40:43–68PubMedGoogle Scholar
  16. 16.
    Heckl U, Weis J (2006) Medizinpsychologische Aspekte der Patientin mit Mammakarzinom. In: Kreienberg R, Jonat W, Volm T, Möbus V, Alt D (Hrsg) Management des Mammakarzinoms. Springer, HeidelbergGoogle Scholar
  17. 17.
    Ibrahim EM, Al-Homaidh A (2011) Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol 28:753–765CrossRefPubMedGoogle Scholar
  18. 18.
    Jones LW, Courneya KS, Fairey AS et al (2004) Effects of an oncologist’s recommendation to exercise on self-reported exercise behavior in newly diagnosed breast cancer survivors: a single-blind, randomized controlled trial. Ann Behav Med 28:105–113CrossRefPubMedGoogle Scholar
  19. 19.
    Kenfield SA, Stampfer MJ, Giovannucci E et al (2011) Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol 29:726–732CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kuehr L, Wiskemann J, Abel U et al (2014) Exercise in patients with non-small cell lung cancer. Med Sci Sports Exerc 46:656–663CrossRefPubMedGoogle Scholar
  21. 21.
    Mishra SI, Scherer RW, Snyder C et al (2012) Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev:CD008465. doi: 10.1002/14651858.cd008465.pub2 Google Scholar
  22. 22.
    Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249:9–17CrossRefPubMedGoogle Scholar
  23. 23.
    Quist M, Rorth M, Zacho M et al (2006) High-intensity resistance and cardiovascular training improve physical capacity in cancer patients undergoing chemotherapy. Scand J Med Sci Sports 16:349–357CrossRefPubMedGoogle Scholar
  24. 24.
    Riboli E (1992) Nutrition and cancer: background and rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol 3:783–791CrossRefPubMedGoogle Scholar
  25. 25.
    Richardson JK, Ashton-Miller JA (1996) Peripheral neuropathy: an often-overlooked cause of falls in the elderly. Postgrad Med 99:161–172PubMedGoogle Scholar
  26. 26.
    Rock CL, Doyle C, Demark-Wahnefried W et al (2012) Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 62:243–274CrossRefPubMedGoogle Scholar
  27. 27.
    Schmid D, Leitzmann MF (2014) Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol 25:1293–1311CrossRefPubMedGoogle Scholar
  28. 28.
    Schmidt ME, Steindorf K, Mutschelknauss E et al (2008) Physical activity and postmenopausal breast cancer: effect modification by breast cancer subtypes and effective periods in life. Cancer Epidemiol Biomarkers Prev 17:3402–3410CrossRefPubMedGoogle Scholar
  29. 29.
    Schmidt T, Berner J, Jonat W et al. (2017) Influence of arm crank ergometry on development of lymphedema in breast cancer patients after axillary dissection: A randomized controlled trial. J Rehabil Med. doi:10.2340/16501977-2167Google Scholar
  30. 30.
    Schmidt T, Weisser B, Durkop J et al (2015) Comparing endurance and resistance training with standard care during chemotherapy for patients with primary breast cancer. Anticancer Res 35:5623–5629PubMedGoogle Scholar
  31. 31.
    Schmitz KH, Ahmed RL, Troxel A et al (2009) Weight lifting in women with breast-cancer-related lymphedema. N Engl J Med 361:664–673CrossRefPubMedGoogle Scholar
  32. 32.
    Schmitz KH, Courneya KS, Matthews C et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42:1409–1426CrossRefPubMedGoogle Scholar
  33. 33.
    Steindorf K, Schmidt ME, Klassen O et al (2014) Randomized, controlled trial of resistance training in breast cancer patients receiving adjuvant radiotherapy: results on cancer-related fatigue and quality of life. Ann Oncol 25:2237–2243CrossRefPubMedGoogle Scholar
  34. 34.
    Streckmann F, Kneis S, Leifert JA et al (2014) Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 25:493–499CrossRefPubMedGoogle Scholar
  35. 35.
    Stubblefield MD, Burstein HJ, Burton AW et al (2009) NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 7(Suppl 5):S1–S26 (quiz S27–28)PubMedGoogle Scholar
  36. 36.
    The Alpha-Tocopherol BCCPSG (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035CrossRefGoogle Scholar
  37. 37.
    The Atbc Cancer Prevention Study Group (1994) The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann Epidemiol 4:1–10Google Scholar
  38. 38.
    Thune I, Furberg AS (2001) Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc 33:S530–S550 (discussion S609–510)CrossRefPubMedGoogle Scholar
  39. 39.
    Vieira AR, Abar L, Vingeliene S et al (2016) Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann Oncol 27:81–96CrossRefPubMedGoogle Scholar
  40. 40.
    Wiskemann J, Dreger P, Schwerdtfeger R et al (2011) Effects of a partly self-administered exercise program before, during, and after allogeneic stem cell transplantation. Blood 117:2604–2613CrossRefPubMedGoogle Scholar
  41. 41.
    World Cancer Research Fund (2016) Cancer Prevention & Survival: Summary of global evidence on diet, weight, physical activity & what increases or decreases your risk of cancer. WCRF, LondonGoogle Scholar
  42. 42.
    World Cancer Research Fund, American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. In, Washington, DCGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2016

Authors and Affiliations

  1. 1.Krebszentrum NordUniversitätsklinikum Schleswig-HolsteinKielDeutschland
  2. 2.Abteilung für Hämato-Onkologie und PalliativmedizinOnkologisches Zentrum TraunsteinTraunsteinDeutschland
  3. 3.Zentrum für KrebsregisterdatenRobert Koch-InstitutBerlinDeutschland

Personalised recommendations