Der Onkologe

, Volume 21, Issue 3, pp 202–210 | Cite as

Risikofaktoren und Prävention des Mammakarzinoms

Leitthema

Zusammenfassung

Hintergrund

Neben Brustkrebsrisikofaktoren wie Hormoneinfluss, Reproduktionsverhalten und Lifestylefaktoren führen moderne molekulargenetische Analyseverfahren zu einer rasant zunehmenden Anzahl von genetischen Risikofaktoren. Folglich kommt genetisch bedingten Erkrankungsrisiken derzeit sowohl von Seiten der Betroffenen als auch von behandelnden Ärzten eine gesteigerte Aufmerksamkeit zu. Bisher gibt es intensivierte Früherkennungsuntersuchungen und prophylaktische Operationen lediglich für gut definierte Hochrisikogruppen, für die einzelne Risikoindikatoren (BRCA-Mutation) die Grundlage darstellen. Es ist aber zu erwarten, dass die genetischen Risikofaktoren, die in Zukunft entdeckt werden, nur mit einem moderat erhöhten Risiko einhergehen. Die Präventionsmaßnahmen, die sich in der Hochrisikogruppe als effizient erwiesen haben, lassen sich aber sicherlich nicht einfach auf Gruppen mit mittleren bzw. niedrigen Erkrankungsrisiken übertragen.

Schlussfolgerungen

Es ist mittlerweile offensichtlich, dass ein bestimmter Genotyp mit einer bestimmten phänotypischen Tumorausprägung assoziiert ist. So sind BRCA1-assoziierte Mammakarzinome typischerweise triple-negativ, BRCA2-assoziierte Tumoren überwiegend vom Luminal-B-Typ und RAD51C-assoziierte meist vom Luminal-A-Typ. Diese Tumorphänotypen zeigen spezifische klinische Krankheitsverläufe und entsprechende Ansprechraten auf gezielt eingesetzte Therapiekonzepte. Für die neuen Risiko-Gene müssen diese Daten im Rahmen von Studien erst gewonnen werden. Sie können dann von Betroffenen und Ärzten als Grundlage im Entscheidungsprozess für bzw. gegen die Inanspruchnahme risikoadaptierter präventiver Maßnahmen genutzt werden.

Schlüsselwörter

Mammakarzinom Risikofaktoren Prävention BRCA1-Gen BRCA2-Gen 

Risk factors and prevention of breast cancer

Abstract

Background

In addition to risk factors for breast cancer, such as hormonal influence, reproductive behavior and lifestyle factors, modern molecular analysis techniques lead to a rapidly increasing number of genetic risk factors for breast cancer. These factors attract heightened awareness of patients and doctors. Intensified surveillance strategies for early detection and prophylactic risk-reducing surgery exist for members of well-defined high-risk groups (e.g. BRCA1 and BRCA2 mutation carriers). New genes that will be discovered in the near future will only be moderate and low risk genes. Preventive strategies that have been proven to be efficient for members of the high-risk group are certainly not appropriate to be easily transferred to members of moderate or low-risk groups.

Conclusion

It has now become obvious that specific genotypes are associated with specific tumor phenotypes. Breast cancers of BRCA1 mutation carriers are mostly triple negative, while BRCA2 and RAD51C mutation carriers show luminal B and luminal A breast cancers, respectively. These tumor phenotypes are associated with a specific course of disease and corresponding response rates to targeted therapies. Epidemiological and clinical studies have to be carried out to deliver these data for the newly identified risk genes and can then form the basis for patients and doctors within the decision-making process for or against undertaking risk-adapted preventive measures.

Keywords

Breast cancer Risk factors Preventive measures BRCA1 gene BRCA2 gene 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. R.K. Schmutzler und K. Rhiem erhielten Honorare für die Teilnahme an Advisory Board Treffen sowie Vortragshonorare der Fa. Astra Zeneca. Prof. Dr. Schmutzler erhielt des Weiteren Honorare für die Teilnahme an Advisory Board Treffen der Firmen Sanofi Aventis und Eisai, Teilnahmegebührenerstattung für den ASCO-Kongress von den Firmen Astra Zeneca, Roche, Sanofi Aventis, Glaxo, Vortragshonorare von Sanofi Aventis und Roche sowie Studiengelder für klinische Studien der Firmen Astra Zeneca, Sanofi Aventis, Siemens Medical Solutions, Amgen.

Der Beitrag enthält keine Studien an Mensch und Tier.

Literatur

  1. 1.
    Krebs in Deutschland 2009/2010 (2013) 9. Ausgabe. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (Hrsg). BerlinGoogle Scholar
  2. 2.
    Pettersson A, Graff RE, Ursin G et al (2014) Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 106(5). pii:dju078. doi:10.1093/jnci/dju078Google Scholar
  3. 3.
    Ingegnoli A, d’Aloia C, Frattaruolo A et al (2010) Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate. Breast J 16(1):55–59. doi:10.1111/j.1524-4741.2009.00850.x (Epub 2009 Oct 13)CrossRefPubMedGoogle Scholar
  4. 4.
    Buist DS, Abraham LA, Barlow WE et al (2010) Diagnosis of second breast cancer events after initial diagnosis of early stage breast cancer. Breast Cancer Res Treat 124:863–873CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Ritte R, Lukanova A, Tjønneland A et al (2013) Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132(11):2619–2629. doi:10.1002/ijc.27913 (Epub 2012 Nov 14)CrossRefPubMedGoogle Scholar
  6. 6.
    Ritte R, Lukanova A, Berrino F et al (2012) Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast Cancer Res 14(3):R76CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Rosner B, Colditz GA, Willett WC (1994) Reproductive risk factors in a prospective study of breast cancer: the Nurses‘ Health Study. Am J Epidemiol 139:819–835PubMedGoogle Scholar
  8. 8.
    Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360(9328):187–195CrossRefGoogle Scholar
  9. 9.
    International Agency for Research on Cancer (2012) Some chemicals in industrial and consumer products, food contaminants and flavourings and water chlorination by-products: volume 100E, personal habits and indoor combustions. Lyon (France)Google Scholar
  10. 10.
    Chen WY, Rosner B, Hankinson SE et al (2011) Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 306:1884–1890CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137:869–882CrossRefPubMedGoogle Scholar
  12. 12.
    Bhatia S, Yasui Y, Robison LL et al (2003) High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol 21(23):4386–4394CrossRefPubMedGoogle Scholar
  13. 13.
    Schellong G, Riepenhausen M, Ehlert K et al (2014) Breast cancer in young women after treatment for Hodgkin’s disease during childhood or adolescence – an observational study with up to 33-year follow-up. Dtsch Arztebl Int 111(1–2):3–9. doi:10.3238/arztebl.2014.0003Google Scholar
  14. 14.
    Henderson TO, Amsterdam A, Bhatia S et al (2010) Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med 152(7):444–455; W144–54. doi:10.1059/0003-4819-152-7-201004060-00009 (Review)CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Hodgson DC (2011) Late effects in the era of modern therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2011:323–329. doi:10.1182/asheducation-2011.1.323 (Review)CrossRefPubMedGoogle Scholar
  16. 16.
    Ford D, Easton DF, Stratton M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62(3):676–689CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Meindl A, Ditsch N, Kast K et al (2011) Hereditary breast and ovarian cancer: new genes, new treatments, new concepts. Dtsch Arztebl Int 108:323–330PubMedCentralPubMedGoogle Scholar
  18. 18.
    Antoniou AC, Beesley J, McGuffog L et al (2010) Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 70:9742–9754CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414CrossRefPubMedGoogle Scholar
  20. 20.
    Gevensleben H, Bossung V, Meindl A et al (2014) Pathological features of breast and ovarian cancers in RAD51C germline mutation carriers. Virchows Arch 465(3):365–369. doi:10.1007/s00428-014-1619-1 (Epub 2014 Jul 4)CrossRefPubMedGoogle Scholar
  21. 21.
    Goldgar DE, Healey S, Dowty JG et al (2011) Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 13:R73CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Graeser MK, Engel C, Rhiem K et al (2009) Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27:5887–5892CrossRefPubMedGoogle Scholar
  23. 23.
    Rhiem K, Engel C, Graeser M et al (2012) The risk of contralateral breast cancer in patients from BRCA1/2 negative high risk families as compared to patients from BRCA1 or BRCA2 positive families: a retrospective cohort study. Breast Cancer Res 14:R156CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Bosse K, Rhiem K, Wappenschmidt B et al (2006) Screening for ovarian cancer by transvaginal ultrasound and serum CA125 measurement in women with a familial predisposition: a prospective cohort study. Gynecol Oncol 103:1077–1082CrossRefPubMedGoogle Scholar
  25. 25.
    King TA, Sakr R, Patil S et al (2011) Clinical management factors contribute to the decision for contralateral prophylactic mastectomy. J Clin Oncol 29(16):2158–2164. doi:10.1200/JCO.2010.29.4041 (Epub 2011 Apr 4)CrossRefPubMedGoogle Scholar
  26. 26.
    Altschuler A, Nekhlyudov L, Rolnick SJ et al (2008) Positive, negative, and disparate – women’s differing long-term psychosocial experiences of bilateral or contralateral prophylactic mastectomy. Breast J 14(1):25–32. doi:10.1111/j.1524-4741.2007.00521.xCrossRefPubMedGoogle Scholar
  27. 27.
    Frost MH, Slezak JM, Tran NV et al (2005) Satisfaction after contralateral prophylactic mastectomy: the significance of mastectomy type, reconstructive complications, and body appearance. J Clin Oncol 23(31):7849–7856 (Epub 2005 Oct 3)CrossRefPubMedGoogle Scholar
  28. 28.
    Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180CrossRefPubMedGoogle Scholar
  29. 29.
    Domchek SM, Friebel TM, Singer CF et al (2010) Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304:967–975CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Meijers-Heijboer H, Geel B van, Putten WL van et al (2001) Breast cancer after prophylactic bilateral mastectomy in women with BRCA1 and BRCA2 mutation. N Engl J Med 345:159–164CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Zentrum Familiärer Brust- und EierstockkrebsUniversitätsklinikum KölnKölnDeutschland

Personalised recommendations