Der Onkologe

, Volume 20, Issue 3, pp 217–228

Basisdiagnose, klinisches Spektrum von Plasmazellerkrankungen und Risikostratifizierung

  • M. Engelhardt
  • F. Gaiser
  • J. Waldschmidt
  • R. Wäsch
  • M. Kleber
Leitthema

Zusammenfassung

Hintergrund

Das multiple Myelom (MM) gehört zu den hämatologischen Neoplasien mit Expansion klonaler Plasmazellen (PZ) und wird als B-Zell-Lymphom klassifiziert.

Ziel

Darstellung der aktuellen Erkenntnisse zur MM-Basisdiagnose, des klinischen Spektrums von Plasmazellerkrankungen und deren Risikostratifizierung.

Material und Methoden

Aktuelle Literaturrecherche internationaler Studien- bzw. Übersichtsartikel.

Ergebnisse

Die monoklonale Gammopathie unbestimmter Signifikanz (MGUS) ist eine Präkanzerose des MM und typischerweise in der Serumeiweißelektrophorese (SPEP) zu detektieren. Der „Peak“ in der SPEP erklärt sich aus der Bildung überschüssiger intakter Immunglobulin(Ig)-Moleküle ohne erkennbare Antigenspezifität. Möglich ist auch die alleinige Bildung von Ig-Leichtketten, welche nicht mittels SPEP detektiert werden. Die Symptome des MM sind vielfältig und häufig uncharakteristisch. Sie manifestieren sich durch eine Beeinträchtigung des blutbildenden Systems und Immunsystems, durch köcherne Schäden am Skelett mit Hyperkalzämie und einer moderat bis terminal eingeschränkten Nierenfunktion. Die Diagnostik umfasst die Quantifizierung des monoklonalen Proteins im Serum und Urin, die Untersuchung von Blutbild, Elektrolyten und Nierenfunktion, eine Bildgebung des Skelettsystems und die Knochenmarkpunktion.

Diskussion

Molekulare Analysen genomischer und epigenetischer Veränderungen maligner PZ sollten zu weiteren therapeutischen Fortschritten beim MM führen, idealerweise im Sinn individualisierter Behandlungsstrategien.

Schlüsselwörter

Multiples Myelom Monoklonale Gammopathie unbestimmter Signifikanz Smoldering multiples Myelom Extramedulläres multiples Myelom Solitäres Plasmozytom 

Basic diagnosis, clinical spectrum of plasma cell diseases and risk stratification

Abstract

Background

Multiple myeloma (MM) is a cancer originating from terminally differentiated B lymphocytes, the plasma cells (PCs) and is therefore classified as a B-cell non-Hodgkin lymphoma.

Objective

This article presents a conclusive summary report on current MM diagnostics, the clinical spectrum of MM diseases and specific risk factors in MM.

Material and methods

This summary report is based on evidence from published international data including randomized clinical studies, meta-analyses, systematic reviews and other available published clinical studies.

Results

As clonal PCs secrete immunoglobulin molecules (lacking antigenic specificity) an M component can incidentally be detected by serum protein electrophoresis (SPEP). Besides intact immunoglobulin molecules, free light chains can be produced by clonal PCs which may go unrecognized by SPEP. The presence of clonal bone marrow (BM) PCs and low levels (serum and/or urine) of the M component are defined as monoclonal gammopathy of undetermined significance (MGUS) which should be followed up in affected individuals based on the risk of progression towards MM. Overt MM is characterized by PC-derived end organ damage which may include bone destruction, hypercalcemia, renal failure and anemia. Associated symptoms are, however, often non-specific and require thorough clinical and laboratory testing.

Conclusion

As rapid insight is gained into myeloma tumor genetics, more individualized and targeted treatment approaches can now be envisaged.

Keywords

Multiple myeloma Monoclonal gammopathy of undefined significance Smoldering multiple myeloma Extramedullary multiple myeloma Solitary myeloma 

Literatur

  1. 1.
    Berger D, Engelhardt R, Mertelsmann R, Engelhardt M (2010) Das Rote Buch, Hämatologie und Internistische Onkologie. Ecomed, 4 AuflGoogle Scholar
  2. 2.
    Billecke L, Murga Penas EM, May AM et al (2013) Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Haematol 161:87–94PubMedCrossRefGoogle Scholar
  3. 3.
    Billecke L, Penas EM, May AM et al (2012) Similar incidences of TP53 deletions in extramedullary organ infiltrations, soft tissue and osteolyses of patients with multiple myeloma. Anticancer Res 32:2031–2034PubMedGoogle Scholar
  4. 4.
    Engelhardt M, Ihorst G, Behringer D et al (2006) Incidence of monoclonal B-cell disease in siblings of patients with multiple myeloma. Haematologica 91:274–276PubMedGoogle Scholar
  5. 5.
    Engelhardt M, Kleber M, Udi J, Waesch R (2012) Current approaches in multiple myeloma and other cancer-related bone diseases. Dtsch Med Wochenschr 137:1057–1061PubMedCrossRefGoogle Scholar
  6. 6.
    Gaiser F, Kleber M, Ihorst G et al (2013) Hevylite assay (HLC) – an additional indispensable technique to the M-spike in MGUS, Multiple Myeloma (MM) and Waldenstroms macroglobulinamia (WM) patients (pts). DHGO Wien Abstract A-593-0012-00587Google Scholar
  7. 7.
    Ghanem N, Lohrmann C, Engelhardt M et al (2006) Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 16:1005–1014PubMedCrossRefGoogle Scholar
  8. 8.
    Greipp PR, San Miguel J, Durie BG et al (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420PubMedCrossRefGoogle Scholar
  9. 9.
    Hasskarl J, Ihorst G, De Pasquale D et al (2011) Association of multiple myeloma with different neoplasms: systematic analysis in consecutive patients with myeloma. Leuk Lymphoma 52:247–259PubMedCrossRefGoogle Scholar
  10. 10.
    Kleber M, Ihorst G, Deschler B et al (2009) Detection of renal impairment as one specific comorbidity factor in multiple myeloma: multicenter study in 198 consecutive patients. Eur J Haematol 83:519–527PubMedCrossRefGoogle Scholar
  11. 11.
    Kleber M, Ihorst G, Gross B et al (2013) Validation of the Freiburg Comorbidity Index in 466 multiple myeloma patients and combination with the international staging system are highly predictive for outcome. Clin Lymphoma Myeloma Leuk 13(5):541–551PubMedCrossRefGoogle Scholar
  12. 12.
    Kleber M, Ihorst G, Terhorst M et al (2011) Comorbidity as a prognostic variable in multiple myeloma: comparative evaluation of common comorbidity scores and use of a novel MM-comorbidity score. Blood Cancer J 1:e35PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kleber M, Ihorst G, Udi J et al (2012) Prognostic risk factor evaluation in patients with relapsed or refractory multiple myeloma receiving lenalidomide treatment: analysis of renal function by eGFR and of additional comorbidities by comorbidity appraisal. Clin Lymphoma Myeloma Leuk 12:38–48PubMedCrossRefGoogle Scholar
  14. 14.
    Kleber M, Udi J, Metzke B et al (2009) Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy. Leuk Lymphoma 53:1057–1061CrossRefGoogle Scholar
  15. 15.
    Korde N, Kristinsson SY, Landgren O (2011) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies. Blood 117:5573–5581PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kortum KM, Engelhardt M, Rasche L et al (2013) Multiple myeloma. Internist (Berl) 54:963–977Google Scholar
  17. 17.
    Kuehnemund A, Liebisch P, Bauchmuller K et al (2009) ‚Light-chain escape-multiple myeloma’-an escape phenomenon from plateau phase: report of the largest patient series using LC-monitoring. J Cancer Res Clin Oncol 135:477–484CrossRefGoogle Scholar
  18. 18.
    Kumar S, Fonseca R, Ketterling RP et al (2012) Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119:2100–2105PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kyle RA, Durie BG, Rajkumar SV et al (2010) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24:1121–1127PubMedCrossRefGoogle Scholar
  20. 20.
    Landgren O, Kyle RA, Pfeiffer RM et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113:5412–5417PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mateos MV, Hernandez MT, Giraldo P et al (2013) Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 369:438–447PubMedCrossRefGoogle Scholar
  22. 22.
    Mueller AM, Geibel A, Neumann HP et al (2006) Primary (AL) amyloidosis in plasma cell disorders. Oncologist 11:824–830CrossRefGoogle Scholar
  23. 23.
    Ngo BT, Felthaus J, Hein M et al (2010) Monitoring bortezomib therapy in multiple myeloma: screening of cyclin D1, D2, and D3 via reliable real-time polymerase chain reaction and association with clinico-pathological features and outcome. Leuk Lymphoma 51:1632–1642PubMedCrossRefGoogle Scholar
  24. 24.
    Pantic M, Schroettner P, Pfeifer D et al (2010) Biclonal origin prevails in concomitant chronic lymphocytic leukemia and multiple myeloma. Leukemia 24:885–890PubMedCrossRefGoogle Scholar
  25. 25.
    Rajkumar SV, Larson D, Kyle RA (2011) Diagnosis of smoldering multiple myeloma. N Engl J Med 365:474–475PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Reed V, Shah J, Medeiros LJ et al (2011) Solitary plasmacytomas: outcome and prognostic factors after definitive radiation therapy. Cancer 117:4468–4474PubMedCrossRefGoogle Scholar
  27. 27.
    Schueler J, Ewerth D, Waldschmidt J et al (2013) Preclinical models of multiple myeloma: a critical appraisal. Expert Opin Biol Ther 13(Suppl 1):S111–S123CrossRefGoogle Scholar
  28. 28.
    Schueler J, Wider D, Klingner K et al (2013) Intratibial injection of human multiple myeloma cells in NOD/SCID IL-2Rgamma(null) mice mimics human myeloma and serves as a valuable tool for the development of anticancer strategies. PLoS One 8:e79939PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Stewart AK, Fonseca R (2007) Review of molecular diagnostics in multiple myeloma. Expert Rev Mol Diagn 7:453–459PubMedCrossRefGoogle Scholar
  30. 30.
    Udi J, Schueler J, Wider D et al (2013) Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization. Br J Haematol 161:104–116PubMedCrossRefGoogle Scholar
  31. 31.
    Donk NW van de, Lokhorst HM, Anderson KC, Richardson PG (2012) How I treat plasma cell leukemia. Blood 120:2376–2389PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Waldschmidt J, Wider D, Follo M et al (2012) Bone Marrow interaction in multiple myeloma pathogenesis: phenotypical analysis, kinetics and novel therapy approaches based on CXCR4 inhibition. Blood 120:2450 (ASH Annual Meeting Abstracts)CrossRefGoogle Scholar
  33. 33.
    Weiss BM, Abadie J, Verma P et al (2009) A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 113:5418–5422PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Engelhardt
    • 1
  • F. Gaiser
    • 1
  • J. Waldschmidt
    • 1
  • R. Wäsch
    • 1
  • M. Kleber
    • 1
  1. 1.Klinik Innere Medizin I, Hämatologie, Onkologie & StammzelltransplantationFreiburgDeutschland

Personalised recommendations