Der Onkologe

, Volume 19, Issue 9, pp 705–710 | Cite as

PSA-gestützte Früherkennung

Fluch oder Segen?
Leitthema

Zusammenfassung

Hintergrund

Das PSA-Screening konnte in der ERSPC-Studie eine Reduktion der relativen prostatakarzinomspezifischen Mortalität von bis zu 32 % zeigen. Dieser Vorteil wird jedoch weiterhin erkauft mit einem hohen Maß an Überdiagnostik und Übertherapie. Zusammen mit volkswirtschaftlichen Überlegungen ist deshalb ein generelles PSA-Screening nicht empfehlenswert. Gleichzeitig bleibt PSA der zurzeit beste Tumormarker, um dem Wunsch des Patienten nach individueller Risikoreduktion gerecht zu werden.

Ergebnisse und Schlussfolgerungen

Ein möglicher Ausweg wäre ein risikoadaptiertes PSA-Screening in einer definierten Altersgruppe: So konnte in Studien eine strenge Korrelation zwischen PSA-Höhe in frühen Lebensabschnitten und dem Risiko, Jahrzehnte später am Prostatakarzinom zu erkranken, nachgewiesen werden. Dieser Zusammenhang ermöglicht eine Risikostratifizierung anhand des individuellen „Baseline“-PSA, um so Hoch-Risiko-Patienten frühzeitig zu identifizieren und solche mit geringem Risiko vor Überdiagnostik und -therapie zu schützen. Die prospektiv randomisierte PROBASE-Studie untersucht dabei den optimalen Zeitpunkt zur Bestimmung eines „Baseline“-PSA und bewertet darüber hinaus das ideale zeitliche Protokoll eines solchen „intelligenten“ PSA-Screenings.

Schlüsselwörter

Prostatakarzinom Früherkennung PSA-Screening Baseline-PSA PROBASE 

PSA-based screening

Boon or bane?

Abstract

Background

In the recent European randomized study of screening for prostate cancer (ERSPC), prostate-specific antigen (PSA)-based screening was shown to reduce the relative prostate cancer-specific mortality by up to 32 %. This advantage, however, was at the expense of substantial overdiagnostics and overtreatment. With economic factors also taken into account, a general PSA screening is not considered advisable. Despite this evaluation PSA remains the best tumor marker to meet the needs of the individual patient to reduce the risk of developing prostate cancer.

Results and conclusions

A risk-adapted PSA screening in a well-defined age group could represent a potentially better trade off in this situation. Studies have shown a strong correlation between absolute PSA values relatively early in life and the risk of developing prostate cancer decades later. Thus risk stratification can be performed according to the individual baseline PSA by identifying high-risk patients early while protecting those at lower risk from overtreatment and overtherapy. The prospectively randomized PROBASE study examines the optimal time to assess this baseline PSA level. Furthermore the study evaluates the ideal time schedule for such an intelligent PSA screening.

Keywords

Prostatic neoplasms Prostate-specific antigen Early cancer detection Baseline-PSA PROBASE 

Literatur

  1. 1.
    Andriole GL, Crawford ED, Grubb RL 3rd et al (2012) Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. J Natl Cancer Inst 104:125–132PubMedCrossRefGoogle Scholar
  2. 2.
    Bill-Axelson A, Holmberg L, Ruutu M et al (2011) Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 364:1708–1717PubMedCrossRefGoogle Scholar
  3. 3.
    Catalona WJ, Partin AW, Slawin KM et al (1998) Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 279:1542–1547PubMedCrossRefGoogle Scholar
  4. 4.
    Draisma G, Boer R, Otto SJ et al (2003) Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 95:868–878PubMedCrossRefGoogle Scholar
  5. 5.
    Heijnsdijk EA, Wever EM, Auvinen A et al (2012) Quality-of-life effects of prostate-specific antigen screening. N Engl J Med 367:595–605PubMedCrossRefGoogle Scholar
  6. 6.
    Ilic D, Neuberger MM, Djulbegovic M et al (2013) Screening for prostate cancer. Cochrane Database Syst Rev 1:CD004720PubMedGoogle Scholar
  7. 7.
    Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  8. 8.
    Kjellman A, Akre O, Norming U et al (2009) 15-year followup of a population based prostate cancer screening study. J Urol 181:1615–1621PubMedCrossRefGoogle Scholar
  9. 9.
    Labrie F, Candas B, Cusan L et al (2004) Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate 59:311–318PubMedCrossRefGoogle Scholar
  10. 10.
    Lansdorp-Vogelaar I, Knudsen AB, Brenner H (2011) Cost-effectiveness of colorectal cancer screening. Epidemiol Rev 33:88–100PubMedCrossRefGoogle Scholar
  11. 11.
    Lilja H, Cronin AM, Dahlin A et al (2011) Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer 117:1210–1219PubMedCrossRefGoogle Scholar
  12. 12.
    Lilja H, Ulmert D, Bjork T et al (2007) Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol 25:431–436PubMedCrossRefGoogle Scholar
  13. 13.
    Moyer VA (2012) Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157:120–134PubMedCrossRefGoogle Scholar
  14. 14.
    Raaijmakers R, Kirkels WJ, Roobol MJ et al (2002) Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology 60:826–830PubMedCrossRefGoogle Scholar
  15. 15.
    Roobol M, Bangma C, Schröder F (2013) EAU Abstract 1Google Scholar
  16. 16.
    Sandblom G, Varenhorst E, Rosell J et al (2011) Randomised prostate cancer screening trial: 20 year follow-up. BMJ 342:d1539PubMedCrossRefGoogle Scholar
  17. 17.
    Schroder FH, Hugosson J, Roobol MJ et al (2012) Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 366:981–990PubMedCrossRefGoogle Scholar
  18. 18.
    Shteynshlyuger A, Andriole GL (2011) Cost-effectiveness of prostate specific antigen screening in the United States: extrapolating from the European study of screening for prostate cancer. J Urol 185:828–832PubMedCrossRefGoogle Scholar
  19. 19.
    Vickers AJ, Lilja H (2012) Predicting prostate cancer many years before diagnosis: how and why? World J Urol 30:131–135PubMedCrossRefGoogle Scholar
  20. 20.
    Wilt TJ, Brawer MK, Jones KM et al (2012) Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367:203–213PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik für UrologieUniversitätsklinikum der Heinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland

Personalised recommendations