Der Onkologe

, Volume 19, Issue 3, pp 180–187

Neuroendokrine Tumoren aus nuklearmedizinischer Sicht

Leitthema

Zusammenfassung

Hintergrund

Neuroendokrine Tumoren (NET) überexprimieren häufig spezifische Rezeptoren, Enzyme und Transporter, die mit nuklearmedizinischen Techniken dargestellt werden können. Für die Diagnostik und Therapie von neuroendokrinen Tumoren steht deshalb eine ganze Reihe von Radiopharmaka klinisch zur Verfügung.

Ziel

Ziel des Beitrags ist eine Darstellung der aktuellen Diagnostik und Therapie der NET mit nuklearmedizinischen Techniken.

Methoden

Selektive Literaturrecherche; Auswertung klinischer Studien.

Ergebnisse

Die am häufigsten eingesetzten Radiopharmaka sind Peptide mit spezifischer Bindung an den Somatostatin-Typ-2-Rezeptor (SSTR2), der von den meisten NET in hoher Dichte exprimiert wird. Diese Peptide können sowohl für die konventionelle nuklearmedizinische Diagnostik als auch für die Positronenemissionstomographie (PET) angewandt werden können. Vorteile der PET-Diagnostik sind eine höhere Empfindlichkeit, aber auch eine deutlich niedrigere Strahlenexposition und wesentlich kürzere Untersuchungszeiten. Neben Liganden des SSTR2 stehen auch Substrate der L-3,4,-dihydroxyphenylalanin(DOPA)-Decarboxylase sowie des Norepinephrintransporters für die klinische Diagnostik zur Verfügung. Eine relativ neue Entwicklung stellen Liganden des Glucagon-like-peptide-1-Rezeptors (GLP-1-Rezeptor) dar. Dieser Rezeptor wird von benignen Insulinomen in hoher Dichte exprimiert. Neben der Diagnostik werden radioaktiv markierte SSTR2-Liganden auch für die Behandlung von metastasierten NET eingesetzt. Große klinische Serien haben gezeigt, dass mit β-Strahlern markierte SSTR-Liganden sowohl bei pankreatischen NET als auch bei Karzinoiden des Dünndarms zu deutlichen Ansprechraten und lang anhaltender Krankheitsstabilisierung führen können.

Schlussfolgerungen

Radiopeptide sind effektiv für die Diagnostik und Therapie von NET. Bei der Auswahl der Patienten für eine Radiotherapie sollten die Nebenwirkungen, insbesondere die Nephrotoxizität berücksichtigt werden.

Schlüsselwörter

Radiopharmaka Somatostatin-Typ-2-Rezeptor L-3,4,-dihydroxyphenylalanin-Decarboxylase Glucagon-like-peptide-1-Rezeptor β-Strahler 

Neuroendocrine tumors from a nuclear medicine viewpoint

Abstract

Context

Neuroendocrine tumors (NETs) frequently overexpress specific receptors, transporters, and enzymes that can be imaged with nuclear medicine techniques. This led to the development of a variety of radiopharmaceuticals for imaging and therapy of NETs.

Objective

The aim of this article is to provide description of the current diagnostics and therapy of neuroendocrine tumors from a nuclear medicine viewpoint.

Methods

Selective review of the literature, analysis of clinical trials.

Results

The most commonly used compounds are peptides with specific binding to the somatostatin type 2 receptor (SSTR2) which is overexpressed by the majority of NETs. These peptides can be used for both conventional nuclear imaging and positron emission tomography (PET). The advantages of PET include higher sensitivity for the detection of primary and metastatic NETs, significantly lower radiation exposure, and markedly shorter duration of the examination. Other radiopharmaceuticals in clinical use include substrates of DOPA (L-3,4-dihydroxyphenylalanine) decarboxylase and substrates of the norepinephrine transporter. A relatively novel development includes ligands for glucagon like peptide 1 (GLP-1) receptor which is overexpressed in high density by benign insulinomas. SSTR2 ligands are also used for therapy of neuroendocrine tumors. Large clinical series have shown that SSTR2 ligands labeled with beta emitters can induce significant and long-lasting objective responses rates in patients with pancreatic NETs, but also in carcinoids of the small intestine.

Conclusions

Radiopeptides are effective for the diagnosis and therapy of NETs. When selecting patients for radiopeptide therapy the potential side effects, particularly nephrotoxicity should be considered.

Keywords

Radiopharmaceuticals Somatostatin type 2 receptor L-3,4-dihydroxyphenylalanine decarboxylase Gastrin-releasing peptide 1 receptor Beta emitters 

Literatur

  1. 1.
    Oberg K, Castellano D (2011) Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev 30(Suppl 1):3–7PubMedCrossRefGoogle Scholar
  2. 2.
    Yao JC, Hassan M, Phan A et al (2008) One hundred years after „carcinoid“: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072PubMedCrossRefGoogle Scholar
  3. 3.
    Heller MT, Shah AB (2011) Imaging of neuroendocrine tumors. Radiol Clin North Am 49:529–548 (vii)PubMedCrossRefGoogle Scholar
  4. 4.
    Hicks RJ (2010) Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy. Cancer Imaging 10 (Spec no A):83–91CrossRefGoogle Scholar
  5. 5.
    Fani M, Maecke HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39(Suppl 1):11–30CrossRefGoogle Scholar
  6. 6.
    Ambrosini V, Fani M, Fanti S et al (2011) Radiopeptide imaging and therapy in Europe. J Nucl Med 52(Suppl 2):42–55CrossRefGoogle Scholar
  7. 7.
    Oberg K (2012) Molecular imaging radiotherapy: theranostics for personalized patient management of neuroendocrine tumors (NETs). Theranostics 2:448–458PubMedCrossRefGoogle Scholar
  8. 8.
    Oberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP (2010) Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 139:742–753 (753 e741)PubMedCrossRefGoogle Scholar
  9. 9.
    Schirmer WJ, Melvin WS, Rush RM et al (1995) Indium-111-pentetreotide scanning versus conventional imaging techniques for the localization of gastrinoma. Surgery 118:1105–1113 (discussion 1113–1104)PubMedCrossRefGoogle Scholar
  10. 10.
    Dromain C, Baere T de, Lumbroso J et al (2005) Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 23:70–78PubMedCrossRefGoogle Scholar
  11. 11.
    Reidy-Lagunes DL, Gollub MJ, Saltz LB (2011) Addition of octreotide functional imaging to cross-sectional computed tomography or magnetic resonance imaging for the detection of neuroendocrine tumors: added value or an anachronism? J Clin Oncol 29:e74–e75PubMedCrossRefGoogle Scholar
  12. 12.
    Bombardieri E, Aktolun C, Baum R et al (2003) 111 In-Pentetreotide Guidelines for Tumour Imaging. http://www.eanm.org/publications/guidelines/gl_onco_fv.pdfGoogle Scholar
  13. 13.
    Haug AR, Cindea-Drimus R, Auernhammer CJ et al (2012) The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med 201253:1686–1692CrossRefGoogle Scholar
  14. 14.
    Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518PubMedCrossRefGoogle Scholar
  15. 15.
    Mayerhoefer ME, Schuetz M, Magnaldi S et al (2012) Are contrast media required for (68)Ga-DOTATOC PET/CT in patients with neuroendocrine tumours of the abdomen? Eur Radiol 22:938–946PubMedCrossRefGoogle Scholar
  16. 16.
    Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870PubMedCrossRefGoogle Scholar
  17. 17.
    Otte A, Herrmann R, Heppeler A et al (1999) Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 26:1439–1447PubMedCrossRefGoogle Scholar
  18. 18.
    Waldherr C, Pless M, Maecke HR et al (2001) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12:941–945PubMedCrossRefGoogle Scholar
  19. 19.
    Waldherr C, Pless M, Maecke HR et al (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43:610–616PubMedGoogle Scholar
  20. 20.
    Bodei L, Cremonesi M, Zoboli S et al (2003) Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 30:207–216PubMedCrossRefGoogle Scholar
  21. 21.
    Valkema R, Pauwels S, Kvols LK et al (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36:147–156PubMedCrossRefGoogle Scholar
  22. 22.
    Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS et al (2010) 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 28:1652–1659PubMedCrossRefGoogle Scholar
  23. 23.
    Kwekkeboom DJ, Herder WW de, Kam BL et al (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130PubMedCrossRefGoogle Scholar
  24. 24.
    Imhof A, Brunner P, Marincek N et al (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29:2416–2423PubMedCrossRefGoogle Scholar
  25. 25.
    Raymond E, Dahan L, Raoul JL et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513PubMedCrossRefGoogle Scholar
  26. 26.
    Rinke A, Muller HH, Schade-Brittinger C et al (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4663PubMedCrossRefGoogle Scholar
  27. 27.
    Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523PubMedCrossRefGoogle Scholar
  28. 28.
    Moll S, Nickeleit V, Mueller-Brand J et al (2001) A new cause of renal thrombotic microangiopathy: yttrium 90-DOTATOC internal radiotherapy. Am J Kidney Dis 37:847–851PubMedCrossRefGoogle Scholar
  29. 29.
    Konijnenberg M, Melis M, Valkema R et al (2007) Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med 48:134–142PubMedGoogle Scholar
  30. 30.
    Claringbold PG, Brayshaw PA, Price RA, Turner JH (2011) Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:302–311PubMedCrossRefGoogle Scholar
  31. 31.
    Essen M van, Krenning EP, Kam BL et al (2008) Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 35:743–748PubMedCrossRefGoogle Scholar
  32. 32.
    Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441PubMedCrossRefGoogle Scholar
  33. 33.
    Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417PubMedCrossRefGoogle Scholar
  34. 34.
    Wild D, Christ E, Caplin ME et al (2011) Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med 52:1073–1078PubMedCrossRefGoogle Scholar
  35. 35.
    Timmers HJ, Chen CC, Carrasquillo JA et al (2009) Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94:4757–4767PubMedCrossRefGoogle Scholar
  36. 36.
    Bomanji JB, Papathanasiou ND (2012) (1)(1)(1)In-DTPA(0)-octreotide (Octreoscan), (1)(3)(1)I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging 39(Suppl 1):S113–S125PubMedCrossRefGoogle Scholar
  37. 37.
    Rischke HC, Benz MR, Wild D et al (2012) Correlation of the genotype of paragangliomas and pheochromocytomas with their metabolic phenotype on 3,4-dihydroxy-6-18F-fluoro-L-phenylalanin PET. J Nucl Med 53:1352–1358PubMedCrossRefGoogle Scholar
  38. 38.
    Haug A, Auernhammer CJ, Wangler B et al (2009) Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Molecular Imaging and Therapy ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Abteilung NuklearmedizinUniversitätsklinikum FreiburgFreiburgDeutschland

Personalised recommendations