Der Onkologe

, Volume 19, Issue 2, pp 136–143 | Cite as

Komplementärer Einsatz von Antioxidanzien und Mikronährstoffen in der Onkologie

Update 2013
  • U. Gröber
  • R. Mücke
  • I.A. Adamietz
  • P. Holzhauer
  • K. Kisters
  • J. Büntzel
  • O. Micke
Leitthema

Zusammenfassung

Hintergrund

Je nach Tumorentität und Geschlecht supplementieren bis zu 90% der onkologischen Patienten ihre Therapie mit antioxidativen und immunstabilisierenden Mikronährstoffen, häufig ohne das Wissen des behandelnden Arztes.

Methoden

Anhand der publizierten wissenschaftlichen Daten und anderweitigen verfügbaren Informationen, z. B. Homepages, ESPEN-Guidelines, wurden Alternativen zur Schulmedizin beurteilt.

Ergebnisse

Obwohl berechtigte Bedenken von onkologischer Seite bestehen, dass Nahrungsergänzungsmittel die Effektivität der Chemo- oder Strahlentherapie beeinträchtigen könnten, geben aktuelle Studien zunehmend Hinweise darauf, dass die medikationsorientierte Supplementierung von Antioxidanzien und anderen Mikronährstoffen wie Selen, L-Carnitin und Vitamin D das Ansprechen auf die antineoplastischen Verfahren (CT, RT) durch eine bessere Compliance, eine verringerte Rate an Nebenwirkungen und somit auch an Therapieabbrüchen steigern, sondern auch die Lebensqualität und die Prognose der onkologischen Patienten verbessern kann.

Schlussfolgerung

Onkologisch tätige Ärzte sollten über die Bedeutung von Selen und anderen Mikronährstoffen sowie potenziellen Interaktionen mit der Krebstherapie informiert sein.

Schlüsselwörter

Antioxidanzien Mikronährstoffe Selen L-Carnitin Vitamin D 

Complementary use of antioxidants and micronutrients in oncology

Update 2013

Abstract

Context

Many patients being treated for cancer use micronutrient supplements with the intention to complement the cancer treatment or help them cope with the therapy and disease-associated side-effects. Up to 90 % of cancer patients supplement with antioxidants without the knowledge of the treating physician.

Methods

Alternatives to textbook medicine were assessed from published scientific data and otherwise available information, e.g. homepages, ESPEN-Guidelines.

Results

There are many concerns that antioxidants might decrease the effectiveness of chemotherapy but increasing evidence suggests a benefit when antioxidants and other micronutrients, such as selenium, L-carnitine and vitamin D are added to conventional cytotoxic therapies.

Conclusion

However, it is imperative that physicians explore the use of antioxidant and other micronutrient supplements with cancer patients and educate them about potentially negative and also potentially beneficial effects.

Keywords

Antioxidants Micronutrients Selenium L-carnitine Vitamin D 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Micke O, Bruns F, Glatzel M et al (2009) Predictive factors for the use of complementary and alternative medicine (CAM) in radiation oncology. Eur J Integr Med 1:22–30Google Scholar
  2. 2.
    Holzhauer P, Gröber U (2010) Checkliste: Komplementäre Onkologie. Hippokrates, StuttgartGoogle Scholar
  3. 3.
    Gröber U, Hübner J, Holzhauer P et al (2010) Antioxidanzien und andere Mikronährstoffe in der komplementären Onkologie. Onkologe 16:73–79CrossRefGoogle Scholar
  4. 4.
    D’Andrea G (2005) Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J Clin 55(5):319–321CrossRefGoogle Scholar
  5. 5.
    Block KI, Koch AC, Mead MN et al (2007) Impact of antioxidant supplementation on chemotherapeutic efficacy: A systematic review of the evidence from randomized controlled trials. Cancer Treat Rev 33:407–418PubMedCrossRefGoogle Scholar
  6. 6.
    Block KI, Koch AC, Mead MN et al (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123:1227–1239PubMedCrossRefGoogle Scholar
  7. 7.
    Mücke R, Schomburg L, Büntzel J et al (2010) Komplementärer Seleneinsatz in der Onkologie. Onkologe 16:181–186CrossRefGoogle Scholar
  8. 8.
    Gröber U (2012) Arzneimittel und Mikronährstoffe. 2. Aufl. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  9. 9.
    Bozzetti F (SCRINIO Working Group) (2009) Screening the nutritional status in oncology: a preliminary report on 1,000 outpatients. Support Care Cancer 17(3):279–284PubMedCrossRefGoogle Scholar
  10. 10.
    Tong H, Isenring E, Yates P (2009) The prevalence of nutrition impact symptoms and their relationship to quality of life and clinical outcomes in medical oncology patients. Support Care Cancer 17(1):83–90PubMedCrossRefGoogle Scholar
  11. 11.
    Fearon KC, Voss AC, Hustend DS (2006) Definition of cancer cachexia: effect of weight loss, reduced food intake and systemic inflammation on functional status and prognosis. Am J Clin Nutr 83(6):1345–1350PubMedGoogle Scholar
  12. 12.
    Churilla TM, Brereton HD, Klem M et al (2012) Vitamin D deficiency is widespread in cancer patients and correlates with advanced stage disease: a community oncology experience. Nutr Cancer (Epub ahead of print)Google Scholar
  13. 13.
    Fakih MG, Trump DL, Johnson CS et al (2009) Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancer. Int J Colorectal Dis 24(2):219–224PubMedCrossRefGoogle Scholar
  14. 14.
    Crew KD, Shane E, Cremers S et al (2009) High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J Clin Oncol 27(13):2151–2156PubMedCrossRefGoogle Scholar
  15. 15.
    Trump DL, Chadha MK, Sunga AY et al (2009) Vitamin D deficiency and insufficiency among patients with prostate cancer. BJU Int 104(9):909–914PubMedCrossRefGoogle Scholar
  16. 16.
    Skrzydlewska E, Sulkowski S, Koda M et al (2005) Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol 11(3):403–406PubMedGoogle Scholar
  17. 17.
    Leung EY, Crozier JE, Talwar D et al (2008) Vitamin antioxidants, lipid peroxidation, tumour stage, the systemic inflammatory response and survival in patients with colorectal cancer. Int J Cancer 123(10):2460–2468PubMedCrossRefGoogle Scholar
  18. 18.
    Look MP, Musch E (1994) Lipid peroxides in the polychemotherapy of cancer patients. Chemotherapy 40(1):8–15PubMedCrossRefGoogle Scholar
  19. 19.
    Stefanini M (1999) Cutaneous bleeding related to zinc deficiency in two cases of advanced cancer. Cancer 86(5):866–870PubMedCrossRefGoogle Scholar
  20. 20.
    Büntzel J, Bruns F, Glatzel M et al (2007) Zinc concentrations in serum during head and neck cancer progression. Anticancer Res 27:1941–1943PubMedGoogle Scholar
  21. 21.
    Gröber U (2009) Antioxidants and other micronutrients in complementary oncology. Breast Care 4(1):13–20PubMedCrossRefGoogle Scholar
  22. 22.
    Arends J, Bodoky G, Bozzetti F et al (2006) ESPEN Guidelines on enteral nutrition: non-surgical oncology. Clin Nutr 25(2):245–259PubMedCrossRefGoogle Scholar
  23. 23.
    Grant WB, Cross HS, Garland CF et al (2009) Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog Biophys Mol Biol 99(2–3):104–113Google Scholar
  24. 24.
    Churilla TM, Brereton HD, Klem M et al (2012) Vitamin D deficiency is widespread in cancer patients and correlates with advanced stage disease: a community oncology experience. Nutr Cancer (Epub ahead of print)Google Scholar
  25. 25.
    Abbas S, Linseisen J, Slanger T et al (2008) Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer–results of a large case-control study. Carcinogenesis 29(1):93–99PubMedCrossRefGoogle Scholar
  26. 26.
    Drake MT, Maurer MJ, Link BK et al (2010) Vitamin D insufficiency and prognosis in non-Hodgkin’s lymphoma. J Clin Oncol 28(27):4191–4198PubMedCrossRefGoogle Scholar
  27. 27.
    Gorham ED, Garland CF, Garland FC et al (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32(3):210–216PubMedCrossRefGoogle Scholar
  28. 28.
    Goodwin PJ, Ennis M, Pritchard KI et al (2009) Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol 27(23):3757–3763PubMedCrossRefGoogle Scholar
  29. 29.
    Garland CF, Gorham ED, Mohr SB et al (2009) Vitamin D for cancer prevention: global perspective. Ann Epidemiol 19(7):468–483PubMedCrossRefGoogle Scholar
  30. 30.
    Gröber U (2010) Vitamin D—an old vitamin in a new perspective. Med Monatsschr Pharm 33:376–383PubMedGoogle Scholar
  31. 31.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281PubMedCrossRefGoogle Scholar
  32. 32.
    Santini D, Galluzzo S, Vincenzi B et al (2010) Longitudinal evaluation of vitamin D plasma levels during anthracycline- and docetaxel-based adjuvant chemotherapy in early-stage breast cancer patients. Ann Oncol 21(1):185–186PubMedCrossRefGoogle Scholar
  33. 33.
    Gröber U, Kisters K (2012) Influence of drugs on vitamin D and calcium metabolism. Dermatoendocrinol 4 (Epub ahead of print)Google Scholar
  34. 34.
    Fink M (2011) Vitamin D deficiency is a cofactor of chemotherapy-induced mucocutaneous toxicity and dysgeusia. J Clin Oncol 29(4):e81–e82PubMedCrossRefGoogle Scholar
  35. 35.
    Prieto-Alhambra D, Javaid MK, Servitja S et al (2011) Vitamin D threshold to prevent aromatase inhibitor-induced arthralgia: a prospectiv cohort study. Breast Cancer Res Treat 125(3):869–878PubMedCrossRefGoogle Scholar
  36. 36.
    Khan QJ, Reddy PS, Kimler BF et al (2010) Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res Treat 119(1):111–118PubMedCrossRefGoogle Scholar
  37. 37.
    Carmel AS, Shieh A, Bang H et al (2012) The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥ 33 ng/ml. Osteoporos Int (Epub ahead of print)Google Scholar
  38. 38.
    Clark LC, Combs GF, Turnbull BW et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. J Am Med Assoc 276:1957–1963CrossRefGoogle Scholar
  39. 39.
    Lippmann SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 301:39–51CrossRefGoogle Scholar
  40. 40.
    Dennert G, Zwahlen M, Brinkman M et al (2011) Selenium for preventing cancer (Review). Cochrane Database Syst Rev 11(5):CD005195Google Scholar
  41. 41.
    Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168:404–410PubMedCrossRefGoogle Scholar
  42. 42.
    Duffield-Lillico AJ, Dalkin BL, Reid ME et al (2003) Nutritional Prevention of Cancer Study Group. BJU Int 91:608–612PubMedCrossRefGoogle Scholar
  43. 43.
    Lawenda BD, Kelly KM, Ladas EJ et al (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100:773–783PubMedCrossRefGoogle Scholar
  44. 44.
    Lin LC, Que J, Lin KL et al (2008) Effects of zinc supplementation on clinical outcomes in patients receiving radiotherapy for head and neck cancers: a double-blinded randomized study. Int J Radiat Oncol Biol Phys 70:368–373PubMedCrossRefGoogle Scholar
  45. 45.
    Lin YS, Lin LC, Lin SW (2009) Effects of zinc supplementation on the survival of patients who received concomitant chemotherapy and radiotherapy for advanced nasopharyngeal carcinoma: follow-up of a double-blind randomized study with subgroup analysis. Laryngoscope 119:1348–1352PubMedCrossRefGoogle Scholar
  46. 46.
    Hu YJ, Chen Y, Zhang YQ et al (1997) The protective role of selenium on the toxicity of cisplatinum-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 56:331–341PubMedCrossRefGoogle Scholar
  47. 47.
    Sieja K, Talerczyk M (2004) Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 93:320–327PubMedCrossRefGoogle Scholar
  48. 48.
    Asfour IA, Shazly SE, Fayek MH et al (2006) Effect of high-dose sodium selenite therapy on polymorphonuclear leukocyte apoptosis in non-Hodgkin’s lymphoma patients. Biol Trace Elem Res 110:19–32PubMedCrossRefGoogle Scholar
  49. 49.
    Asfour IA, Fayek MH, Raouf S et al (2007) The impact of high-dose sodium selenite therapy on Bcl-2 expression in adult non-Hodgkin’s lymphoma patients: correlation with response and survival. Biol Trace Elem Res 120:1–10PubMedCrossRefGoogle Scholar
  50. 50.
    Asfour IA, El-Tehewi MM, Ahmed MH et al (2009) High-dose sodium selenite can induce apoptosis of lymphoma cells in adult patients with non-Hodgkin’s lymphoma. Biol Trace Elem Res 127:200–210PubMedCrossRefGoogle Scholar
  51. 51.
    Büntzel J, Riesenbeck D, Glatzel M et al (2010) Limited effects of selenium substitution in the prevention of radiation-associated toxicities. Results of a randomized study in head neck cancer patients. Anticancer Res 30:1829–1832PubMedGoogle Scholar
  52. 52.
    Mücke R, Schomburg L, Glatzel M (2010) Multicenter, phase III trial comparing selenium supplementation with observation in gynecologic radiation oncology. Int J Radiat Oncol Biol Phys 70:825–835Google Scholar
  53. 53.
    Cruciani RA, Dvorkin E, Homel P et al (2004) L-carnitine supplementation for the treatment of fatigue and depressed mood in cancer patients with carnitine deficiency: a preliminary analysis. Ann N Y Acad Sci 1033:168–176PubMedCrossRefGoogle Scholar
  54. 54.
    De Grandis D (2007) Acetyl-L-carnitine for the treatment of chemotherapy-induced peripheral neuropathy: a short review. CNS Drugs 21(Suppl 1):39–43CrossRefGoogle Scholar
  55. 55.
    Jin HW, Flatters SJ, Xiao WH et al (2008) Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 210(1):229–237PubMedCrossRefGoogle Scholar
  56. 56.
    Bianchi G, Vitali G, Caraceni A et al (2005) Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 41(12):1746–1750PubMedCrossRefGoogle Scholar
  57. 57.
    Sayed-Ahmed MM, Salman TM, Gaballah HE et al (2001) Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res 43(6):513–520PubMedCrossRefGoogle Scholar
  58. 58.
    Wenzel U, Nickel A, Daniel H (2005) Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr 135(6):1510–1514PubMedGoogle Scholar
  59. 59.
    Kraft M, Kraft K, Gärtner S et al (2012) L-Carnitine-supplementation in advanced pancreatic cancer (CARPAN) – a randomized multicentre trial. Nutr J 11:52PubMedCrossRefGoogle Scholar
  60. 60.
    Hockenberry MJ, Hooke MC, Gregurich M et al (2009) Carnitine plasma levels and fatigue in children/adolescents receiving cisplatin, ifosfamide, or doxorubicin. J Pediatr Hematol Oncol 31(9):664–669PubMedCrossRefGoogle Scholar
  61. 61.
    Gröber U, Hübner J, Holzhauer P (2010) Vitamin C in der komplementären Onkologie. Onkologe 16:303–313Google Scholar
  62. 62.
    Nechuta S, Lu W, Chen Z et al (2011) Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 20(2):262–271PubMedCrossRefGoogle Scholar
  63. 63.
    Shimpo K, Nagatsu T, Yamada K et al (1991) Ascorbic acid and adriamycin toxicity. Am J Clin Nutr 54(6 Suppl):1298S–1301SPubMedGoogle Scholar
  64. 64.
    Kurbacher CM, Wagner U, Kolster B et al (1996) Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett 103(2):183–189PubMedCrossRefGoogle Scholar
  65. 65.
    Chen Q, Espey MG, Sun AY et al (2008) Pharmacologic doses of ascorbate act as prooxidant and decrease growth of aggressive tumor xenografts in mice. PNAS 105(32):11037–11038CrossRefGoogle Scholar
  66. 66.
    Shinozaki K, Hosokawa Y, Hazawa M et al (2011) Ascorbic acid enhances radiation-induced apoptosis in an HL60 human leukemia cell line. J Radiat Res 52(2):229–237PubMedCrossRefGoogle Scholar
  67. 67.
    Herst PM, Broadley KW, Harper JL et al (2012) Pharmacological concentrations of ascorbate radiosensitize glioblastoma multiforme primary cells by increasing oxidative DNA damage and inhibiting G2/M arrest. Free Radic Biol Med 52(8):1486–1493PubMedCrossRefGoogle Scholar
  68. 68.
    Drisko JA, Chapman J, Hunter VJ (2003) The use of antioxidants with first-line chemotherapy in two cases of ovarian cancer. J Am Coll Nutr 22(2):118–123PubMedGoogle Scholar
  69. 69.
    Vollbracht C, Schneider B, Leendert V et al (2011) Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo 25(6):983–990PubMedGoogle Scholar
  70. 70.
    Mücke R (2007) Komplementärer Seleneinsatz in der Onkologie. Onkologe 13: 477–480CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • U. Gröber
    • 1
  • R. Mücke
    • 2
    • 3
  • I.A. Adamietz
    • 3
  • P. Holzhauer
    • 1
    • 4
  • K. Kisters
    • 1
    • 5
  • J. Büntzel
    • 6
  • O. Micke
    • 7
  1. 1.Akademie für MikronährstoffmedizinEssenDeutschland
  2. 2.Klinik für StrahlentherapieKlinikum Lippe GmbHLemgoDeutschland
  3. 3.Klinik für Strahlentherapie und Radio-OnkologieRuhr Universität BochumBochumDeutschland
  4. 4.Innere Medizin II - Onkologie und KomplementärmedizinKlinik Bad TrisslOberaudorfDeutschland
  5. 5.Medizinische Klinik ISt. Anna HospitalHerneDeutschland
  6. 6.Klinik für Hals-, Nasen- und OhrenheilkundeSüdharz-Krankenhaus Nordhausen gGmbHNordhausenDeutschland
  7. 7.Klinik für Strahlentherapie und RadioonkologieFranziskus Hospital Bielefeld gGmbHBielefeldDeutschland

Personalised recommendations