Der Onkologe

, Volume 18, Issue 12, pp 1149–1156 | Cite as

Bedeutung molekularpathologischer Methoden in der Onkologie

Pathologie und onkologische Entscheidungsprozesse
CME Zertifizierte Fortbildung
  • 300 Downloads

Zusammenfassung

Die Anzahl von molekularen Untersuchungen in der Histo- und Zytopathologie hat in den letzten Jahren, insbesondere mit zunehmender Bedeutung der sog. personalisierten Medizin bei Krebspatienten, stark zugenommen. Die Ergebnisse dieser Untersuchungen fließen vermehrt in die Pathologieberichte ein, die den behandelnden Ärzten als Grundlage für weitere Therapieentscheidungen dienen. Die wichtigsten molekularen Methoden, die derzeit in der Pathologie eingesetzt werden, werden mit ihren Möglichkeiten und Grenzen vorgestellt.

Schlüsselwörter

Molekulare Pathologie Immunhistochemie In-situ-Hybridisierung „Next-generation sequencing“ Therapieentscheidung 

Relevance of molecular pathological methods in oncology

Pathology and oncological decision processes

Abstract

The number of molecular tests used in histopathology and cytopathology has increased dramatically during the last years in particular as a result of the increasing influence of so-called personalized medicine in oncology patients. The results of these tests are becoming increasingly more integrated into pathology reports and serve the treating clinicians as a basis for further therapeutic decisions. The most important molecular methods currently used in pathology are presented including the capabilities and limitations.

Keywords

Molecular pathology Immunohistochemistry In situ hybridization Next-generation sequencing Therapeutic decision 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Moch H, Blank PR, Dietel M et al (2012) Personalized cancer medicine and the future of pathology. Virchows Arch 460:3–8PubMedCrossRefGoogle Scholar
  2. 2.
    Stricker T, Catenacci DVT, Seiwert TY (2011) Molecular profiling of cancer – the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic. Semin Oncol 38:173–185PubMedCrossRefGoogle Scholar
  3. 3.
    Igbokwe A, Lopez-Terrada DH (2011) Molecular testing of solid tumors. Arch Pathol Lab Med 135:67–82PubMedGoogle Scholar
  4. 4.
    Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743PubMedCrossRefGoogle Scholar
  5. 5.
    Hortobagyi GN (2005) Trastuzumab in the treatment of breast cancer. N Engl J Med 353:1734–1736PubMedCrossRefGoogle Scholar
  6. 6.
    Varga Z, Diebold J, Dommann-Scherrer C et al (2012) How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss working group of breast- and gynecopathologists. PLoS One 7:e37379PubMedCrossRefGoogle Scholar
  7. 7.
    Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741PubMedCrossRefGoogle Scholar
  8. 8.
    Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388PubMedCrossRefGoogle Scholar
  9. 9.
    Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRefGoogle Scholar
  10. 10.
    Jimeno A, Messersmith WA, Hirsch FR et al (2009) KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol 27:1130–1136PubMedCrossRefGoogle Scholar
  11. 11.
    Anonymous (2011) Getting personal. Nature 473:253–254Google Scholar
  12. 12.
    Luciano JS, Andersson B, Batchelor C (2011) The translational medicine ontology and knowledge base: driving personalized medicine by bridging the gap between bench and bedside. J Biomed Semantics 2 [Suppl 2] 2:S1Google Scholar
  13. 13.
    Dahinden C, Ingold B, Wild P et al (2010) Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res 16:88–98PubMedCrossRefGoogle Scholar
  14. 14.
    Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806PubMedCrossRefGoogle Scholar
  15. 15.
    Carracedo A, Ma L, Teruya-Feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118:3065–3074PubMedGoogle Scholar
  16. 16.
    Dietel M, Sers C (2006) Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 448:744–755PubMedCrossRefGoogle Scholar
  17. 17.
    Bundesaerztekammer (2010) (Muster-)Weiterbildungsordnung 2003 – Fassung vom 25.06.2010. Bundesaerztekammer, BerlinGoogle Scholar
  18. 18.
    Lehr HA, Moch H, Christen B et al (2012) Board examination for anatomical pathology in Switzerland: two intense days to verify professional competence. Virchows Arch 461:87–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Klinische PathologieUniversitätsSpital ZürichZürichSchweiz

Personalised recommendations