Der Onkologe

, Volume 17, Issue 1, pp 37–43 | Cite as

Strahlentherapie bei Hirngliomen im Erwachsenenalter

Leitthema
  • 96 Downloads

Zusammenfassung

Die Strahlenbehandlung gehört nach der Operation zu den wichtigsten Behandlungsmaßnahmen bei niedriggradigen und hoch malignen Gliomen. Niedriggradige und hoch malige Gliome zeichnen sich in der Regel durch eine primär unifokale Tumorentstehung mit aggressivem Wachstum entlang der Nervenscheiden aus. Die Rolle der Radiotherapie bei niedriggradigen Gliomen erfährt durch Einführung von Chemotherapie aktuell einen Wandel in der Indikationsstellung. Nach wie vor sind jedoch Risikofaktoren das wichtigste Instrument für die Entscheidung zur Therapie. Unbestritten ist die Indikation bei inoperablen progredienten Tumoren oder im Falle einer malignen Transformation. Die Gliome hohen Malignitätsgrads (Grad III, IV) sind mit etwa 30% die häufigsten und zugleich aggressivsten Hirntumoren gliösen Ursprungs und führen unbehandelt innerhalb weniger Wochen zum Tode. Neben der primär einzusetzenden Operation ist der Stellenwert der postoperativen perkutanen Strahlentherapie in der Behandlung der malignen Gliome unbestritten. Alternative Bestrahlungstechniken sind die Schwerionentherapie und die stereotaktische interstitielle Brachytherapie bei kleineren inoperablen Hirntumoren.

Schlüsselwörter

Gliom Strahlentherapie Hoher Malignitätsgrad Schwerionentherapie Brachytherapie 

Radiotherapy of brain gliomas in adulthood

Abstract

Low grade and highly malignant gliomas are normally characterized by a primary single site formation of a tumor with an aggressive growth form along the nerve sheath. The role of radiotherapy for low grade gliomas is currently undergoing a change in the indications due to the introduction of chemotherapy. Risk factors, however, still remain the most important instrument for the decision on therapy. The indications for inoperable progressive tumors or malignant transformation are indisputable. Gliomas with high grade malignancy (grades III and IV) are with 30% the most common and also the most aggressive brain tumors and lead to death within a few weeks if they remain treated. In addition to the primary operation the value of postoperative percutaneous radiation in the treatment of malignant gliomas is indisputable. Alternative radiation techniques are heavy ion therapy and stereotactic interstitial brachytherapy for small inoperable brain tumors.

Keywords

Glioma Radiotherapy High grade malignancy Heavy ion therapy Brachytherapy 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Arcicasa M, Roncadin M, Bidoli E et al (1999) Reirradiation and lomustine in patients with relapsed high-grade gliomas. Int J Radiat Oncol Biol Phys 43(4):789–793CrossRefPubMedGoogle Scholar
  2. 2.
    Bartsch R, Weitmann HD, Pennwieser W et al (2005) Retrospective analysis of re-irradiation in malignant glioma: a single-center experience. Wien Klin Wochenschr 117(23–24):821–826Google Scholar
  3. 3.
    Baumann GS, Gaspar LE, Fisher BJ et al (1994) A prospective study of short-course radiotherapy in poor prognosis glioblastoma multiforme. Int Radiat Oncol Biol Phys 29:835–839CrossRefGoogle Scholar
  4. 4.
    Cairncross G, Berkey B, Shaw E et al (2006) Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 24(18):2707–2714CrossRefPubMedGoogle Scholar
  5. 5.
    Cho KH, Hall WA, Gerbi BJ et al (1999) Single dose versus fractionated stereotactic radiotherapy for recurrent high-grade gliomas. Int J Radiat Oncol Biol Phys 45(5):1133–1141CrossRefPubMedGoogle Scholar
  6. 6.
    Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23(34):8863–8869CrossRefPubMedGoogle Scholar
  7. 7.
    Combs SE, Bohl J, Elsasser T et al (2009) Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int J Radiat Biol 85(2):126–137CrossRefPubMedGoogle Scholar
  8. 8.
    Douw L, Klein M, Fagel SS et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8:810–818CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzek MM, Thornton AF, Rabinov JD et al (1999) Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 91(2):251–260CrossRefPubMedGoogle Scholar
  10. 10.
    Grosu AL, Weber WA, Franz M et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519CrossRefPubMedGoogle Scholar
  11. 11.
    Hoegler DB, Davey P (1997) A prospective study of short course radiotherapy in elderly patients with malignant glioma. J Neurooncol 201–204Google Scholar
  12. 12.
    Hudes RS, Corn BW, Werner-Wasik M et al (1999) A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int J Radiat Oncol Biol Phys 43(2):293–298CrossRefPubMedGoogle Scholar
  13. 13.
    Keime-Guibert F, Chinot O, Taillandier L et al (2007) Association of French-Speaking Neuro-Oncologists. Radiotherapy for glioblastoma in the elderly. N Engl J Med 356(15):1527–1535CrossRefPubMedGoogle Scholar
  14. 14.
    Kortmann RD, Bamberg M, Meixensberger J (2009) Zentralnervensystem. In: Bamberg M, Molls M, Sack H (Hrsg) Radioonkologie. Klinik, 2. Aufl. W. Zuckschwerdt, München Wien New York, S 798–899, ISBN 978-3-88603-953-1Google Scholar
  15. 15.
    Kreth FW, Faist M, Warnke PC et al (1995) Interstitial radiosurgery of low-grade gliomas. J Neurosurg 82:418–429CrossRefPubMedGoogle Scholar
  16. 16.
    Laprie A (2009) Proton magnetic resonance spectroscopic imaging and other types of metabolic imaging for radiotherapy planning in adult and pediatric high-grade gliomas. Cancer Radiother 13(6–7):556–561Google Scholar
  17. 17.
    Lederman G, Wronski M, Arbit E et al (2000) Treatment of recurrent glioblastoma multiforme using fractionated stereotactic radiosurgery and concurrent paclitaxel. Am J Clin Oncol 23(2):155–159CrossRefPubMedGoogle Scholar
  18. 18.
    Leighton C, Fisher B, Bauman G et al (1997) Supratentorial low-grade glioma in adults: An analysis of prognostic factors and timing of radiation. J Clin Oncol 15:1294–1301PubMedGoogle Scholar
  19. 19.
    Lunsford LD, Somaza S, Kondziolka D, Flickinger JC (1995) Survival after stereotactic biopsy and irradiation of cerebral nonanaplastic, nonpilocytic astrocytoma. J Neurosurg 82(4):523–529PubMedGoogle Scholar
  20. 20.
    Mizoe JE, Tsujii H, Hasegawa A et al (2007) Organizing Committee of the Central Nervous System Tumor Working Group. Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy. Int J Radiat Oncol Biol Phys 69(2):390–396CrossRefPubMedGoogle Scholar
  21. 21.
    Mizumoto M, Tsuboi K, Igaki H et al (2010) Phase I/II trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme. Int J Radiat Oncol Biol Phys 77(1):98–105CrossRefPubMedGoogle Scholar
  22. 22.
    Mohan DS, Suh JH, Phan JL, et al (1998) Outcome in elderly patients undergoing definitive surgery and radiation therapy for supratentorial glioblastoma multiforme at a tertiary care institution. Int J Radiat Oncol Biol Phys 42:981–987CrossRefPubMedGoogle Scholar
  23. 23.
    Noda SE, El-Jawahri A, Patel D et al (2009) Molecular advances of brain tumors in radiation oncology. Semin Radiat Oncol 19(3):171–178. ReviewCrossRefPubMedGoogle Scholar
  24. 24.
    Piroth MD, Pinkawa M, Holy R et al (2009) Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme- a dosimetric comparison. Radiat Oncol 4:57CrossRefPubMedGoogle Scholar
  25. 25.
    Roa W, Brasher PM, Bauman G et al (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588CrossRefPubMedGoogle Scholar
  26. 26.
    Scerrati M, Montemaggi, Iacoangeli M et al (1994) Interstitial brachytherapy of low-grade cerebral gliomas: Analysis of results in a series of 36 cases. Acta Neurochir (Wien) 131:97–105Google Scholar
  27. 27.
    Scharfen CO, Sneed PK, Wara WM (1992) High activity iodine- 125 implant for gliomas. Int J Radiat Oncol Biol Phys 24:583–591CrossRefPubMedGoogle Scholar
  28. 28.
    Shepherd SF, Laing RW, Cosgrove VP, et al (1997) Hypofractionated stereotactic radiotherapy in the management of recurrent glioma Int. J Radiat Oncol Biol Phys 37 393–398Google Scholar
  29. 29.
    Shaw EG, Berkey B, Coons SW et al (2008) Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 109(5):835–841CrossRefPubMedGoogle Scholar
  30. 30.
    Shrieve DC, Alexander EIII, Wen PY (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36:275–284CrossRefPubMedGoogle Scholar
  31. 31.
    Surma A, Niemala M, Vilkki J et al (2001) Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology 6:1285–1290Google Scholar
  32. 32.
    Taphoorn MJ, Heimans JJ, van-der-Veen EA, Karim AB (1995) Endocrine functions in long-term survivors of low-grade supratentorial glioma treated with radiation therapy. J Neurooncol 25(2):97–102CrossRefPubMedGoogle Scholar
  33. 33.
    Thomas R, James N, Guerrero D et al (1994) Hypofractionated radiotherapy as palliative treatment in poor prognosis patients with high grade glioma. Radiotherapy and Oncology 33 113–116Google Scholar
  34. 34.
    Van den Bent MJ, Carpentier AF, Brandes AA et al (2006) Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 24(18):2715–2722CrossRefGoogle Scholar
  35. 35.
    Villa S, Vinolas N, Verger E, Yaya R, Martinez A, Gil M, Moreno V, Caral L, Graus F: Efficacy of radiotherapy for malignant gliomas in elderly patients Int. J. Radiat. Oncol. Biol. Phys. 42 (1998) 977-980Google Scholar
  36. 36.
    Vordermark D, Kolbl O, Ruprecht K, Vince GH, Bratengeier K, Flentje M. Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer. 2005 May 30;5(1):55Google Scholar
  37. 37.
    Voynov G, Kaufman S, Hong T, Pinkerton A, Simon R, Dowsett R. Treatment of recurrent malignant gliomas with stereotactic intensity modulated radiation therapy. Am J Clin Oncol. 2002 Dec;25(6):606-11Google Scholar
  38. 38.
    Weller M, Berger H, Hartmann C et al (2007) German Glioma Network. Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin Cancer Res 13(23):6933–6937CrossRefPubMedGoogle Scholar
  39. 39.
    Wick W, Hartmann C, Engel C (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27(35):5874–5880. Epub 2009 Nov 9. Erratum in: J Clin Oncol 2010 Feb 1;28(4):708Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Klink und Poliklinik für Strahlentherapie und RadioonkologieUniversitätsklinikum Leipzig AöRLeipzigDeutschland

Personalised recommendations