Der Onkologe

, Volume 15, Issue 6, pp 609–622 | Cite as

Das Stammzellkonzept der Mamma

CME Weiterbildung • Zertifizierte Fortbildung
  • 117 Downloads

Zusammenfassung

Das Stammzellkonzept der Mamma ist eng mit der Frage nach Entstehung, Therapieansprechen und Verlauf des Mammakarzinoms verbunden. Die Fortschritte hinsichtlich der molekular-phänotypischen Charakterisierung einzelner Zellkompartimente in verschiedenen Lebensabschnitten innerhalb der Brustdrüse sowie das Verständnis um deren biologische Eigenschaften haben zur Identifikation unreifer Stamm-/Progenitorzellen geführt. Aufgrund fehlender einheitlicher Identifizierungsmethoden dieser Zelltypen ist eine Definition nur aufgrund des biologischen Verhaltens allgemein akzeptiert. Mit Hilfe des Mammastammzellkonzeptes lassen sich verschiedene klinische Erscheinungsbilder der Brustkrebserkrankung erklären (z. B. hereditäres Mammakarzinom). Entsprechende therapeutische Umsetzungen stehen allerdings noch am Beginn der klinischen Erprobung.

Schlüsselwörter

Stammzelle Mammakarzinom Biologie Prävention Therapie 

The concept of mammary epithelial stem cells

Abstract

The concept of mammary epithelial stem cell is tightly linked to the unsolved question of tumor initiation, treatment response and course of disease. Progress regarding the molecular and phenotypical characterization of specific cellular compartments in different periods of life within the human female breast, as well as the understanding of their biological properties has led to the identification of immature stem-/progenitor cells. Since there is no uniform method of identification of these cells universal agreement exists only on their definition based on their biological properties. The concept of a mammalian epithelial stem cell explains several clinical presentations of breast cancer disease (e.g. hereditary breast cancer). However, therapeutic application is currently in the early stages of clinical trials.

Keywords

Stem cell Breast cancer Biology Prevention Treatment 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Cohnheim J (1882) Vorlesung über die allgemeine Pathologie, 1. Bd., Berlin, S 736Google Scholar
  2. 2.
    Potter VR (1978) Phenotypic diversity in experimental hepatomas: The concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br J Cancer 38(1):1–23PubMedGoogle Scholar
  3. 3.
    Russo IH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3(1):49–61PubMedCrossRefGoogle Scholar
  4. 4.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  5. 5.
    Rody A, Karn T, Holtrich U, Kaufmann M (2008) Stem cell like breast cancers-a model for the identification of new prognostic/predictive markers in endocrine responsive breast cancer exemplified by Plexin B1. Eur J Obstet Gynecol Reprod Biol 139(1):11–15PubMedCrossRefGoogle Scholar
  6. 6.
    Kaufmann M, Rody A, Brustkrebs (2009) Mortalitätsreduktion durch Früherkennung und adjuvante Therapie. Geburtsh Frauenheilk (im Druck)Google Scholar
  7. 7.
    Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874PubMedCrossRefGoogle Scholar
  8. 8.
    Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMedGoogle Scholar
  9. 9.
    Lakhani SR (1999) The transition from hyperplasia to invasive carcinoma of the breast. J Pathol 187:272–278PubMedCrossRefGoogle Scholar
  10. 10.
    Boecker W, Buerger H, Schmitz K et al (2001) Ductal epithelial proliferations of the breast: A biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 195(4):415–421PubMedCrossRefGoogle Scholar
  11. 11.
    Boecker W, Moll R, Dervan P et al (2002) Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol 198(4):458–467PubMedCrossRefGoogle Scholar
  12. 12.
    Rakha EA, Putti TC, Abd El-Rehim DM et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506PubMedCrossRefGoogle Scholar
  13. 13.
    Martínez-Climent JA, Andreu EJ, Prosper F (2006) Somatic stem cells and the origin of cancer. Clin Transl Oncol 8:647–663PubMedCrossRefGoogle Scholar
  14. 14.
    Graziano A, d’Aquino R, Tirino V et al (2008) The stem cell hypothesis in head and neck cancer. J Cell Biochem 103:408–412PubMedCrossRefGoogle Scholar
  15. 15.
    Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  16. 16.
    Molyneux G, Regan J, Smalley MJ (2007) Mammary stem cells and breast cancer. Cell Mol Life Sci 64(24):3248–3260PubMedCrossRefGoogle Scholar
  17. 17.
    Clarke RB, Spence K, Anderson E et al (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456PubMedCrossRefGoogle Scholar
  18. 18.
    Cairns J (2006) Cancer and the immortal strand hypothesis. Genetics 174:1069–1072PubMedCrossRefGoogle Scholar
  19. 19.
    Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687PubMedCrossRefGoogle Scholar
  20. 20.
    Welm BE, Tepera SB, Venezia T et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56PubMedCrossRefGoogle Scholar
  21. 21.
    Gudjonsson T et al (2002) Isolation, immortalization and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16:693–706PubMedCrossRefGoogle Scholar
  22. 22.
    Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMedGoogle Scholar
  23. 23.
    Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRefGoogle Scholar
  24. 24.
    Asselin-Labat M, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014PubMedGoogle Scholar
  25. 25.
    Sleeman KE, Kendrick H, Robertson D et al (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26PubMedCrossRefGoogle Scholar
  26. 26.
    Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMedGoogle Scholar
  27. 27.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  28. 28.
    Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10PubMedCrossRefGoogle Scholar
  29. 29.
    Kalirai H, Clarke RB (2006) Human breast epithelial stem cells and their regulation. J Pathol 208(1):7–16PubMedCrossRefGoogle Scholar
  30. 30.
    Kakarala M, Wicha MS, Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813–2820CrossRefGoogle Scholar
  31. 31.
    Jones DL, Wagers AJ (2008) No place like home: Anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9(1):11–21PubMedCrossRefGoogle Scholar
  32. 32.
    Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118(Pt 16):3585–3594PubMedCrossRefGoogle Scholar
  33. 33.
    Stumpf WE, Narbaitz R, Sar M (1980) Estrogen receptors in the fetal mouse. J Steroid Biochem 12:55–64PubMedCrossRefGoogle Scholar
  34. 34.
    Brisken C, Heineman A, Chavarria T et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14(6):650–654PubMedGoogle Scholar
  35. 35.
    Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47(22):6052–6057PubMedGoogle Scholar
  36. 36.
    Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 103(7):2196–2201PubMedCrossRefGoogle Scholar
  37. 37.
    Savarese TM, Strohsnitter WC, Low HP et al (2007) Correlation of umbilical cord blood hormones and growth factors with stem cell potential: Implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res 9(3):R29PubMedCrossRefGoogle Scholar
  38. 38.
    Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  39. 39.
    Ahlgren M, Melbye M, Wohlfahrt J, Sørensen T (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351:1619–1626PubMedCrossRefGoogle Scholar
  40. 40.
    van Garderen E, Schalken JA (2002) Morphogenic and tumorigenic potentials of the mammary growth hormone/growth hormone receptor system. Mol Cell Endocrinol 197(1–2):153–165Google Scholar
  41. 41.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37CrossRefGoogle Scholar
  42. 42.
    Kohrt HE, Nouri N, Nowels K et al (2005) Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2(9):e284PubMedCrossRefGoogle Scholar
  43. 43.
    Ménard S, Tomasic G, Casalini P et al (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3(5):817–819PubMedGoogle Scholar
  44. 44.
    Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favourable prognosis in estrogen receptor negative and HER2 positive breast cancers. Breast Cancer Res 11(2):R15PubMedCrossRefGoogle Scholar
  45. 45.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedCrossRefGoogle Scholar
  46. 46.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902PubMedCrossRefGoogle Scholar
  47. 47.
    Rody A, Holtrich U, Gaetje R et al (2007) Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res 13(4):1115–1122PubMedCrossRefGoogle Scholar
  48. 48.
    Rody A, Karn T, Ruckhäberle E et al (2009) Loss of Plexin B1 is highly prognostic in low proliferating ER positive breast cancers--results of a large scale microarray analysis. Eur J Cancer 45(3):405–413PubMedCrossRefGoogle Scholar
  49. 49.
    Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226PubMedCrossRefGoogle Scholar
  50. 50.
    Palacios J, Honrado E, Osorio A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90(1):5–14PubMedCrossRefGoogle Scholar
  51. 51.
    Liu S, Ginestier C, Charafe-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105(5):1680–1685PubMedCrossRefGoogle Scholar
  52. 52.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  53. 53.
    Rody A, Karn T, Ruckhaeberle E et al (2008) Differentially expressed genes of reprogrammed human pluripotent stem cells in breast cancer. Eur J Cancer 44(13):1789–1792PubMedCrossRefGoogle Scholar
  54. 54.
    Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507PubMedCrossRefGoogle Scholar
  55. 55.
    Dontu G, Liu S, Wicha MS (2005) Stem cells in mammary development and carcinogenesis: Implications for prevention and treatment. Stem Cell Rev 1:207–213PubMedCrossRefGoogle Scholar
  56. 56.
    Jenkins PJ (2004) Acromegaly and cancer. Horm Res 62 (Suppl):108–115PubMedCrossRefGoogle Scholar
  57. 57.
    Russo J, Balogh GA, Heulings R et al (2006) Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 15:306–342PubMedCrossRefGoogle Scholar
  58. 58.
    Hilakivi-Clarke L, de Assis S (2006) Fetal origins of breast cancer. Trends Endocrinol Metab 17:340–348PubMedCrossRefGoogle Scholar
  59. 59.
    Wang Z, Zhang Y, Banerjee S et al (2006) Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 106:2503–2513PubMedCrossRefGoogle Scholar
  60. 60.
    Jaiswal AS, Marlow BP, Gupta N et al (2002) Betacatenin- mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)- induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427PubMedCrossRefGoogle Scholar
  61. 61.
    Pahlke G, Ngiewih Y, Kern M et al (2006) Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. J Agric Food Chem 54:7075–7082PubMedCrossRefGoogle Scholar
  62. 62.
    Nagler A, Riklis I, Kletter Y et al (1986) Effect of 1,25 dihydroxyvitamin D3 and retinoic acid on normal human pluripotent (CFU-mix), erythroid (BFU-E) and myeloid (CFU-C) progenitor cell growth and differentiation patterns. Exp Hematol 14:60–65PubMedGoogle Scholar
  63. 63.
    Sakariassen PO, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: Status and controversies. Neoplasia 9:882–892PubMedCrossRefGoogle Scholar
  64. 64.
    Kim M, Turnquist H, Jackson J et al (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28PubMedGoogle Scholar
  65. 65.
    Smalley MJ, Clarke RB (2005) The mammary gland side population: A putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10:37–47PubMedCrossRefGoogle Scholar
  66. 66.
    Litingtung Y, Lawler AM, Sebald SM et al (1999) Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Gen 261:100–105CrossRefGoogle Scholar
  67. 67.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785PubMedCrossRefGoogle Scholar
  68. 68.
    Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679PubMedCrossRefGoogle Scholar
  69. 69.
    Kaufmann M, Heider KH, Sinn HP et al (1995) CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345(8950):615–619PubMedCrossRefGoogle Scholar
  70. 70.
    Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44/CD24–/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMedGoogle Scholar
  71. 71.
    Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRefGoogle Scholar
  72. 72.
    Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Klinik für Gynäkologie und GeburtshilfeJohann-Wolfgang-Goethe-UniversitätFrankfurtDeutschland

Personalised recommendations