Advertisement

Der Onkologe

, Volume 15, Issue 5, pp 474–486 | Cite as

Szintigraphie und Single-Photon-Emissions-Computertomographie (SPECT und PET)

  • W.H. Knapp
Leitthema
  • 125 Downloads

Zusammenfassung

Planare Szintigraphie und Single-Photon-Emissions-Computertomographie (SPECT bzw. SPECT/CT) spielen nach wie vor eine bedeutende Rolle in der Onkologie, v. a. zur Diagnostik von Skelettmetastasen, beim Schilddrüsenkarzinom, bei neuroendokrinen Tumoren und zur Darstellung der Lymphdrainagewege. Die PET (Positronenemissionstomographie) bzw. PET/CT ist zu einer etablierten Methode zur Unterstützung von Therapieentscheidungen bei einer Vielzahl von Tumoren herangereift. Weit überwiegend wird das Glukoseanalog FDG (Fluor-18-Desoxy-glucose) eingesetzt, v. a. zum Staging und zur Rezidivdiagnostik. Da auch Entzündungsherde eine gesteigerte Glukoseutilisation aufweisen können, müssen in bestimmten Fällen positive PET-Befunde bioptisch gesichert werden. Für wenig entdifferenzierte Tumoren werden zunehmend andere, Non-FDG-Tracer eingesetzt, z. B. für Prostatakarzinome und neuroendokrine Tumoren.

Schlüsselwörter

Szintigraphie Single-Photon-Emissions-Computertomographie Skelettmetastasen Schilddrüsenkarzinom Neuroendokrine Tumoren 

Scintigraphy and single photon emission computed tomography (SPECT and PET)

Abstract

Planar scintigraphy and single photon emission computed tomography (SPECT) or SPECT/computed tomography (CT) still play an important role in oncology, particularly in the detection of skeletal metastases, in thyroid cancer, in neuroendocrine tumours, and for imaging of the lymphatic system involved in drainage of the tumour area. Positron emission tomography (PET) or PET/CT has become an established modality in the management of many tumours. By far, the glucose analogue fluorodeoxyglucose (FDG) is the most frequently used radiotracer, used mainly for staging and detection of recurrences. Because inflammatory processes may be associated with increased glucose utilisation, bioptic confirmation of PET-positive findings may be required. For less dedifferentiated tumours, non-FDG PET tracers are increasingly employed, such as for prostate cancer and neuroendocrine tumours.

Keywords

Scintigraphy Photon emission computed tomography Skeletal metastases Thyroid cancer Neuroendocrine tumors 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Brismar T, Collins VP, Kesselberg M (1989) Thallium-201 uptake relates to membrane potential and potassium permeability in human glioma cells. Brain Res 500:30–60PubMedCrossRefGoogle Scholar
  2. 2.
    Cheson et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586PubMedCrossRefGoogle Scholar
  3. 3.
    Coiffier et al (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:325–242CrossRefGoogle Scholar
  4. 4.
    Delgado-Bolton RC, Fernandez-Perez C, Gonzalez-Mate A, Carreras JL (2003) Meta-analysis of the performance of 18F-FDG PET in primary tumor detection in unknown primary tumors. J Nucl Med 44:1301–1314PubMedGoogle Scholar
  5. 5.
    Delmon-Mongeon LI, Piwnica-Worms D, Van der Abbeele AD et al (1990) Uptake of the cation hexakis (2-methoxyisobutylisonitrile) technetium-99m by human carcinoma cells lines in vitro. Cancer Res 50:2198–2202Google Scholar
  6. 6.
    Fischer BM, Mortensen J, Hojgaard L (2001) Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review. Lancet Oncol 2:659–666PubMedCrossRefGoogle Scholar
  7. 7.
    Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–506PubMedCrossRefGoogle Scholar
  8. 8.
    Goerres GW, Stupp R, Barghouth G et al (2005) The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging 32:153–162PubMedCrossRefGoogle Scholar
  9. 9.
    Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924PubMedCrossRefGoogle Scholar
  10. 10.
    Health Technology Assessment of Positron Emission Tomography (PET) in Oncology: A Systematic Review. Institute for Clinical Evaluative Sciences. April 2004. Available at: http://www.ices.on.ca/webpage.cfm?site_id=1&org_id=31&morg_id=0&gsec_id=08item_id=2080. Accessed January 14, 2008Google Scholar
  11. 11.
    Hutchings et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107:52–59PubMedCrossRefGoogle Scholar
  12. 12.
    Isasi CR, Moadel RM, Blaufox MD et al (2005) A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 90:105–112PubMedCrossRefGoogle Scholar
  13. 13.
    Isasi CR, Lu P, Blaufox MD (2005) A metaanalysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patienst with lymphoma. Cancer 104:1066–1074PubMedCrossRefGoogle Scholar
  14. 14.
    Jereczek-Fossa BA, Jassem J, Orecchia R (2004) Cervical lymph node metastases of squamous cell carcinoma from an unknown primary. Cancer Treat Rev 30:153–164PubMedCrossRefGoogle Scholar
  15. 15.
    Juweid et al (2005) Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol 25:571–578CrossRefGoogle Scholar
  16. 16.
    Krenning EP, Bakker WH, Kooij PPM et al (1992) Somatostatin receptor scintigraphy with (111-In-DTPA-D-PHE1)-octreotide in man: metabolism, dosimetry and comparison with (123-I-Tyr-3-)-octreotide. J Nucl Med 33:652–658PubMedGoogle Scholar
  17. 17.
    Leone G, Volpino P, Galati G et al (1997) Evaluation of the respiratory function by lung scintigraphy in patient canditates for pulmonary resection. G Chir 18:301–307PubMedGoogle Scholar
  18. 18.
    McEwan AJB (1996) Unsealed source therapy of painful bone metastases: an update. Semin Nucl Med 27:165–182CrossRefGoogle Scholar
  19. 19.
    Nieder C, Gregoire V, Ang KK (2001) Cervical lymph node metastases from occult squamous cell carcinoma: cut down a tree to get an apple? Int J Radiat Oncol Biol Phys 50:727–733PubMedGoogle Scholar
  20. 20.
    Orlando LA, Kulasingam SL, Matchar DB (2004) Meta-analysis: the detection of pancreatic malignancy with positron emission tomography. Aliment Pharmacol Ther 20:1063–1070PubMedCrossRefGoogle Scholar
  21. 21.
    Ott K, Fink U, Becker K et al (2003) Weber WA. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 21:4604–4610PubMedCrossRefGoogle Scholar
  22. 22.
    Pakos, EE, Fotopoulos AD, Ioannidis JP (2005) 18F-FDG-PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analyses. J Nucl Med 46:958–963PubMedGoogle Scholar
  23. 23.
    Prichard RS, Dijkstra B, McDermott EW et al (2003) The role of molecular staging in malignant melanoma. Eur J Surg Oncol 29:306–314PubMedCrossRefGoogle Scholar
  24. 24.
    Rusthoven KE, Koshy M, Paulino AC (2004) The role of fluorodeoxyglucose positron emission tomography in cervical lymph node metastases from an unknown primary tumor. Cancer 101:2641–2649PubMedCrossRefGoogle Scholar
  25. 25.
    Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologie diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77PubMedGoogle Scholar
  26. 26.
    Smets LA, Loesberg C, Janssen M et al (1989) Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 49:2941–2944PubMedGoogle Scholar
  27. 27.
    Spaepen et al (2002) Early restaging positron emission tomography with (18) F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 13:1356–1363PubMedCrossRefGoogle Scholar
  28. 28.
    van Tinteren H, Hoekstra OS, Smit EF et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359:1388–1393CrossRefGoogle Scholar
  29. 29.
    Vermeersch H, Loose D, Ham U et al (2003) Nuclear medicine imaging for the assessment of primary and recurrent head and neck carcinoma using routinely available tracers. Eur J Nucl Med Mol Imaging 30:1689–1700PubMedCrossRefGoogle Scholar
  30. 30.
    Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–335Google Scholar
  31. 31.
    Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46:983–995PubMedGoogle Scholar
  32. 32.
    Van Westreenen HL, Westerterp M, Bossuyt PM et al (2004) Systemativ review of the staging performance of 18F-fluorodesxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 22:3805–3812CrossRefGoogle Scholar
  33. 33.
    Wiering B, Krabbe PF, Jager GI et al (2005) The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 104:2658–2670PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Klinik für NuklearmedizinMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations