Der Onkologe

, Volume 13, Issue 3, pp 250–255

Apoptoseinduktion als Wirkprinzip

Leitthema
  • 81 Downloads

Zusammenfassung

Die Apoptose stellt einen regulierten Zelltod dar, der zur Aufrechterhaltung der Homeostase in multizellulären Organismen von großer Bedeutung ist. Zahlreiche Signalwege modellieren diese Form des Zelltods. Die Apoptose kann über einen extrinsischen Weg initiiert werden, der – durch Todesrezeptoren vermittelt – eine Kaskade verschiedener Caspasen in der Zelle im Gang setzt und zum Zelltod führt. Intrazelluläre Schädigungen können sich auch über einen intrinsischen Apoptoseweg weiter verselbständigen, der auf dem Boden amplifizierter Proteine insbesondere Cytochrom C aus Mitochondrien freisetzt und so Caspasen aktiviert. Schädigen genetische Veränderungen während eines Transformationsprozesses wiederkehrend physiologische „Checkpoints“, die im physiologischen Zustand eine Apoptose in einer Zelle auslösen, so ist es denkbar, dass Tumorzellen von den Defekten in ihren apoptotischen Signalwegen direkt abhängen, um zu überleben. In diesem Zusammenhang stellen apoptotische Signalwege hervorragende molekulare Ziele für eine rationale Entwicklung neuer therapeutischer Substanzen dar, um eine Apoptose in Tumorzellen spezifisch zu fördern.

Schlüsselwörter

Apoptose Tumor Tumortherapie Antikörper 

Induction of apoptosis as active principle

Abstract

Apoptosis is a highly regulated pathway that is critical for maintaining homeostasis in multicellular organisms. Numerous signals are capable of modulating cell death. Apoptosis can be initiated through an extrinsic pathway engaging death receptors, which often trigger a caspase cascade that is capable of killing the cell. Intracellular damage proceeds through an intrinsic pathway of apoptosis that relies on amplification loops, especially the release of cytochrome C from the mitochondrion to further activate caspases. If genetic events inherent to the transformation process always violate physiologic checkpoints that would trigger apoptosis, it is conceivable that cancer cells will prove to be addicted to their apoptotic defects for their own maintenance. In this context, apoptotic pathways provide exciting molecular targets for the rational design of new therapeutic agents to specifically promote apoptosis of cancer cells.

Keywords

Apoptosis Tumor Tumor therapy Antibody 

Literatur

  1. 1.
    Cheng EH, Wei MC, Weiler S et al. (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711CrossRefPubMedGoogle Scholar
  2. 2.
    Verhagen AM, Ekert PG, Pakusch M et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53CrossRefPubMedGoogle Scholar
  3. 3.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281: 1305–1308CrossRefPubMedGoogle Scholar
  4. 4.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22: 9030–9040CrossRefPubMedGoogle Scholar
  5. 5.
    Younes M, Georgakis GV, Rahmani M et al. (2006) Functional expression of TRAIL receptors TRAIL-R1 and TRAIL-R2 in esophageal adenocarcinoma. Eur J Cancer 42: 542–547CrossRefPubMedGoogle Scholar
  6. 6.
    Jo M, Kim TH, Seol DW et al. (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6: 564–567CrossRefPubMedGoogle Scholar
  7. 7.
    Tolcher AW (2001) Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin Oncol 28: 67–70CrossRefGoogle Scholar
  8. 8.
    Leung S, Miyake H, Zellweger T et al. (2001) Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer 91: 846–850CrossRefPubMedGoogle Scholar
  9. 9.
    Rudin CM, Kozloff M, Hoffman PC et al. (2004) Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22: 1110–1117CrossRefPubMedGoogle Scholar
  10. 10.
    van de Donk NW, de Weerdt, O, Veth G et al. (2004) G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma. Leukemia 18: 1078–1084CrossRefPubMedGoogle Scholar
  11. 11.
    Frantz S (2004) Lessons learnt from Genasense’s failure. Nat Rev Drug Discov 3: 542–543CrossRefGoogle Scholar
  12. 12.
    Rosario LA, O’Brien ML, Henderson CJ et al. (2000) Cellular response to a glutathione S-transferase P1-1 activated prodrug. Mol Pharmacol 58: 167–174PubMedGoogle Scholar
  13. 13.
    Izbicka E, Lawrence R, Cerna C et al. (1997) Activity of TER286 against human tumor colony-forming units. Anticancer Drugs 8: 345–348CrossRefPubMedGoogle Scholar
  14. 14.
    Kavanagh JJ, Gershenson DM, Choi H et al. (2005) Multi-institutional phase 2 study of TLK286 (TELCYTA, a glutathione S-transferase P1-1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer. Int J Gynecol Cancer 15: 593–600CrossRefPubMedGoogle Scholar
  15. 15.
    Kelland LR (2005) Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs 10: 413–424CrossRefPubMedGoogle Scholar
  16. 16.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5: 417–421CrossRefPubMedGoogle Scholar
  17. 17.
    Adams J, Kauffman M (2004) Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22: 304–311CrossRefPubMedGoogle Scholar
  18. 18.
    Papandreou CN, Daliani DD, Nix D et al. (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22: 2108–2121CrossRefPubMedGoogle Scholar
  19. 19.
    Richardson P (2003). Clinical update: proteasome inhibitors in hematologic malignancies. Cancer Treat Rev 29 Suppl 1: 33–39CrossRefGoogle Scholar
  20. 20.
    Richardson PG, Barlogie B, Berenson J et al. (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609–2617CrossRefPubMedGoogle Scholar
  21. 21.
    Davis NB, Taber DA, Ansari RH et al. (2004) Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study. J Clin Oncol 22: 115–119CrossRefPubMedGoogle Scholar
  22. 22.
    Melnick A, Licht JD (2002) Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 9: 322–332CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly WK, Richon VM, O’Connor O et al. (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9: 3578–3588PubMedGoogle Scholar
  24. 24.
    Kelland LR (2003) Farnesyl transferase inhibitors in the treatment of breast cancer. Expert Opin Investig Drugs 12: 413–421CrossRefPubMedGoogle Scholar
  25. 25.
    Van Cutsem E, van de Velde H, Karasek P et al. (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22: 1430–1438CrossRefPubMedGoogle Scholar
  26. 26.
    Neckers L (2003) Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 10: 733–739CrossRefPubMedGoogle Scholar
  27. 27.
    Hostein I, Robertson D, DiStefano F et al. (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61: 4003–4009PubMedGoogle Scholar
  28. 28.
    Cohen EE, Rudin CM (2001) ONYX-015. Onyx Pharmaceuticals. Curr Opin Investig Drugs 2: 1770–1775PubMedGoogle Scholar
  29. 29.
    Los M, Burek CJ, Stroh C et al. (2003) Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today 8: 67–77CrossRefPubMedGoogle Scholar
  30. 30.
    Cohen MH, Williams GA, Sridhara R et al. (2004) United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 10: 1212–1218CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Molekulare Onko-ImmunologieChirurgische Klinik I, Universitätsklinikum WürzburgWürzburgDeutschland

Personalised recommendations