Der Onkologe

, Volume 12, Issue 3, pp 253–262

Vakzinierungen in der Therapie des Mammakarzinoms

Stand klinischer Studien
Update Onkologie
  • 22 Downloads

Zusammenfassung

Für Brustkrebspatientinnen wurden therapeutische Vakzinierungen bisher selten und dann in Pilot- bzw. Phase-I-Studien beim metastasiertem Mammakarzinom erprobt. Dabei kam international ein breites Spektrum verschiedener Strategien zum Einsatz: tumorzellbasierte Vakzinen, antigenspezifische Impfungen (definierte Peptid-, RNA- und DNA-Vakzinen) sowie Vakzinierungen gegen Karbohydrate. Allen Ansätzen ist gemeinsam, dass sie ein tolerierbares Nebenwirkungsprofil hatten und in der palliativen Situation zumindest vereinzelt zur Stabilisierung der Erkrankung beitrugen. In aktuelleren Studien wurde anhand diverser immunologischer Parameter gezeigt, dass die Induktion tumorspezifischer T-Zellen und/oder Antikörper in Mammakarzinompatientinnen prinzipiell möglich ist. Da es für die Validierung antitumoraler Immunreaktionen jedoch keine verbindlichen Standards gibt und da klinische Endpunkte meist nur als sekundäre Zielkriterien erfasst wurden, ist es derzeit noch nicht möglich, induzierte Immunreaktionen als Surrogatparameter für die therapeutische Wirksamkeit verschiedener Impfstrategien zu werten. In der metastasierten Situation führte die Zusammensetzung, Ausprägung und Persistenz der induzierten Immunrantwort noch nicht zu einem dauerhaften klinischen Benefit. Jedoch zeigte eine erste prospektiv kontrollierte Vakzinierungsstudie mit insgesamt 53 Patientinnen in der Adjuvanz, dass nodalpositive, Her-2/neu+ Hochrisikopatientinnen von der Vakzination mit Her-2/neu-abgeleiteten Peptiden profitierten und die Rückfallrate reduziert wurde. Zur Optimierung immuntherapeutischer Strategien sollen Kombinationen verschiedener Ansätze führen, die multiple Targetstrukturen erreichen und multiple immunologische Effektorarme aktivieren können. Zudem müssen Patientenkollektive definiert werden, die tatsächlich von Immuntherapien profitieren können.

Schlüsselwörter

Mammakarzinom Immuntherapie Vakzinierungen Tumorantigene Tumorspezifische T-Zellen 

Vaccination in the therapy of breast cancer

Abstract

Therapeutic vaccinations have seldom been tested in patients with breast cancer and only in pilot or phase I trials involving metastatic breast cancer. A wide spectrum of different strategies has been applied internationally in this area including tumor-based vaccines, antigen-specific vaccinations (defined peptide-, RNA-, and DNA-vaccines), and vaccinations against carbohydrates. These strategies all have one thing in common, they have been shown to have a profile of side effects that is tolerable and in the palliative situation, in certain cases, contributed to stabilization of the disease. By applying diverse immunological parameters, current investigations have demonstrated that the induction of tumor-specific T cells and/or antibodies in patients with breast cancer is, in principle, possible. However, as there are no binding standards for validating anti-tumor immune reactions and as clinical end points are usually only recorded as secondary target criteria, it is not currently possible to classify induced immune reactions as a surrogate parameter for the therapeutic effectiveness of different vaccination strategies. In situations involving metastasis, the composition, expression and persistence of the induced immune response has not yet led to a long-lasting clinical benefit. Nevertheless, the first prospective controlled vaccination study involving 53 patients revealed that nodal-positive, Her-2/neu+ high-risk patients profited from vaccination with Her-2/neu-derived peptides and that recidivism was reduced. The combination of various approaches should lead to the optimization of immunotherapeutic strategies. These combinations should reach multiple target structures and should activate multiple immunological effector arms. The patient collectives that can actually profit from immunotherapies must, however, still be defined.

Keywords

Breast cancer Immunotherapy Vaccination Tumor antigens Tumor-specific T cells 

Literatur

  1. 1.
    Petru E, Schmähl D (1998) No relevant influence on overall survival time in patients with metastatic breast cancer undergoing combination chemotherapy. Cancer Res Clin Oncol 114:183–185CrossRefGoogle Scholar
  2. 2.
    Schlesinger-Raab A, Eckel R, Engel J, Sauer H, Löhrs U, Molls M, Hölzel D (2005) Metastasiertes Mammakarzinom: keine Lebensverlängerung seit 20 Jahren. Dtsch Ärztebl 40:2154–2161Google Scholar
  3. 3.
    Braun S, Vogl FD, Naume B et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802CrossRefPubMedGoogle Scholar
  4. 4.
    Braun S, Vogl FD, Janni W, Marth C, Schlimok G, Pantel K (2003) Evaluation of bone marrow in breast cancer patients: prediction of clinical outcome and response to therapy. Breast 12:397–404CrossRefPubMedGoogle Scholar
  5. 5.
    Overwijk WW (2005) Breaking tolerance in cancer immunotherapy: time to ACT. Curr Opin Immunol 17:187–194CrossRefPubMedGoogle Scholar
  6. 6.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045PubMedGoogle Scholar
  7. 7.
    Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839CrossRefPubMedGoogle Scholar
  8. 8.
    Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411CrossRefPubMedGoogle Scholar
  9. 9.
    Bonehill A, Heirman C, Thielemans K (2005) Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J Gene Med 7:686–695CrossRefPubMedGoogle Scholar
  10. 10.
    Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594CrossRefPubMedGoogle Scholar
  11. 11.
    Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618CrossRefPubMedGoogle Scholar
  12. 12.
    Gattinoni L, Finkelstein SE, Klebanoff CA et al. (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912CrossRefPubMedGoogle Scholar
  13. 13.
    Campoli M, Ferrone S, Zea AH, Rodriguez PC, Ochoa AC (2005) Mechanisms of tumor evasion. Cancer Treat Res 123:61–88PubMedGoogle Scholar
  14. 14.
    Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A (2005) Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 17:211–217CrossRefPubMedGoogle Scholar
  15. 15.
    Keilholz U, Weber J, Finke JH et al. (2002) Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the society for biological therapy. J Immunother 25:97–138CrossRefPubMedGoogle Scholar
  16. 16.
    Gückel B, Meuer S, Bastert G, Wallwiener D (2003) Einsatz tumorassoziierter Antigene in der Immuntherapie und Immundiagnostik des Mammakarzinoms. Geburtsh u Frauenheilk 64:130–139Google Scholar
  17. 17.
    Rentzsch C, Kayser S, Stumm S et al. (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9:4376–4386PubMedGoogle Scholar
  18. 18.
    Gückel B, Stumm S, Rentzsch C, Marmé A, Mannhardt G, Wallwiener D (2005) A CD80-transfected human breast cancer cell variant induces Her-2/neu-specific T-cells in HLA-A*02-matched situations in vitro as well as in vivo. Cancer Immunol Immunother 54:129–140CrossRefPubMedGoogle Scholar
  19. 19.
    Xu XN, Screaton GR (2002) MHC/peptide tetramer-based studies of T cell function. J Immunol Methods 268:21–28CrossRefPubMedGoogle Scholar
  20. 20.
    Disis ML, Schiffman K, Gooley TA McNeel DG, Rinn K, Knutson KL (2000) Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 6:1347–1350PubMedGoogle Scholar
  21. 21.
    Jäger E, Nagata Y, Gnjatic S et al. (2000) Monitoring CD8 T cell responses to NY-ESO-1: Correlation of humoral and cellular immune responses. Proc Natl Acad Sc USA 97:4760–4765CrossRefGoogle Scholar
  22. 22.
    Ahlert T, Sauerbrei W, Bastert G et al. (1997) Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. J Clin Oncol 15:1354–1366PubMedGoogle Scholar
  23. 23.
    Dols A, Meijer SL, Smith JW 2nd, Fox BA, Urba WJ (2003) Allogeneic breast cancer cell vaccines. Clin Breast Cancer [3 Suppl] 4:173–180Google Scholar
  24. 24.
    Dols A, Meijer SL, Hu HM et al. (2003) Identification of tumor-specific antibodies in patients with breast cancer vaccinated with gene-modified allogeneic tumor cells. J Immunother 26:163–170CrossRefPubMedGoogle Scholar
  25. 25.
    Gückel B, Stumm S, Kayser S et al. (2002) CD80-modified tumor cell lines: implications for cell-based vaccinations in breast cancer patients. Zentrallblatt Gynäkologie 124:566–573Google Scholar
  26. 26.
    Nestle FO, Farkas A, Conrad C (2005) Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 17:163–169CrossRefPubMedGoogle Scholar
  27. 27.
    Avigan D, Vasir B, Gong J et al. (2004) Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 10:4699–4708CrossRefPubMedGoogle Scholar
  28. 28.
    Kobayashi T, Shinohara H, Toyoda M, Iwamoto S, Tanigawa N (2001) Regression of lymph node metastases by immunotherapy using autologous breast tumor-lysate pulsed dendritic cells: report of a case. Surg Today 3:513–516CrossRefGoogle Scholar
  29. 29.
    Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263CrossRefPubMedGoogle Scholar
  30. 30.
    Jäger E, Ringhoffer M, Altmannsberger M et al. (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71:142–147CrossRefPubMedGoogle Scholar
  31. 31.
    Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102–3108PubMedGoogle Scholar
  32. 32.
    Svane IM, Pedersen AE, Johnsen HE et al. (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641CrossRefPubMedGoogle Scholar
  33. 33.
    Vonderheide RH, Domchek SM, Schultze JL et al. (2004) Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin Cancer Res 10:828–839CrossRefPubMedGoogle Scholar
  34. 34.
    Gaudernack G, Gjertsen MK (1999) Combination of GM-CSF with antitumour vaccine strategies. Eur J Cancer [Suppl] 3:S33–35CrossRefGoogle Scholar
  35. 35.
    Oka Y, Tsuboi A, Taguchi T et al. (2004) Induction of WT1 (Wilms‘ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890CrossRefPubMedGoogle Scholar
  36. 36.
    Disis ML, Gooley TA, Rinn K et al. (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624–2632CrossRefPubMedGoogle Scholar
  37. 37.
    Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO (2002) Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int J Cancer 97:660–667CrossRefPubMedGoogle Scholar
  38. 38.
    Peoples GE, Gurney JM, Hueman MT et al. (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients.J Clin Oncol 23:7536–7545CrossRefPubMedGoogle Scholar
  39. 39.
    Scholl SM, Balloul JM, Le Goc G et al. (2000) Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 23:570–80CrossRefPubMedGoogle Scholar
  40. 40.
    Pecher G, Haring A, Kaiser L, Thiel E (2002) Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol Immunother 51:669–673CrossRefPubMedGoogle Scholar
  41. 41.
    Müller MR, Grünebach F, Nencioni A, Brossart P (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170:5892–5896PubMedGoogle Scholar
  42. 42.
    Carralot JP, Weide B, Schoor O et al. (2005) Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. Genet Vaccines Ther 3:6CrossRefPubMedGoogle Scholar
  43. 43.
    Holmberg LA, Sandmaier BM (2004) Vaccination with Theratope (STn-KLH) as treatment for breast cancer. Expert Rev Vaccines 3:655–663CrossRefPubMedGoogle Scholar
  44. 44.
    van den Eynde BJ, Boon T (1997) Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res 27:81–86PubMedGoogle Scholar
  45. 45.
    Chen Y-T, Güre AO, Tsang S, Stockert E, Jäger E, Knuth A, Old LJ (1998) Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc Natl Acad Sci USA 95:6919–6923CrossRefPubMedGoogle Scholar
  46. 46.
    Mischo A, Kubuschok B, Ertan K et al. (2005) Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. Int J Cancer 10 [Epub ahead of print]Google Scholar
  47. 47.
    Lethe B, Lucas S, Michaux L et al. (1998) LAGE-1, a new gene with tumor specificity. Int J Cancer 76:903–908CrossRefPubMedGoogle Scholar
  48. 48.
    Mashino K, Sadanaga N, Tanaka F et al. (2001) Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br J Cancer 85:713–720CrossRefPubMedGoogle Scholar
  49. 49.
    Brasseur F, Marchand M, Vanwijick R, Herin M, Lethe B, Chomez P, Boon T (1992) Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed in some breast tumors. Int J Cancer 52:839–841PubMedGoogle Scholar
  50. 50.
    Russo V, Traversari C, Verrecchia A, Mottolese M, Natali PG, Bordignon C (1995) Expression of the MAGE gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy. Int J Cancer 64:216–221PubMedGoogle Scholar
  51. 51.
    De Smet C, Lurquin C, van der Bruggen P, de Plaen E, Brasseur F, Boon T (1994) Sequence and expression patterns of the human MAGE2 gene. Immunogenetics 39:121–129PubMedGoogle Scholar
  52. 52.
    Kawamoto M, Shichijo S, Imai Y, Imaizumi T, Koga T, Yanaga H, Ithoh K (1999) Expression of the SART-1 tumor rejection antigen in breast cancer. Int J Cancer 80:64–67CrossRefPubMedGoogle Scholar
  53. 53.
    Türeci O, Chen YT, Sahin U et al. (1998) Expression of SSX genes in human tumors. Int J Cancer 77:19–23CrossRefPubMedGoogle Scholar
  54. 54.
    Tilkin A-F, Lubin R, Soussi T et al. (1995) Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 25:1765–1769PubMedGoogle Scholar
  55. 55.
    Miyoshi Y, Ando A, Egawa C et al. (2002) High expression of Wilms‘ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 8:1167–1171PubMedGoogle Scholar
  56. 56.
    Loeb DM, Evron E, Patel CB et al. (2001) Wilms‘ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61:921–925PubMedGoogle Scholar
  57. 57.
    Fisk B, Tracy LB, Wharton JT, Ioannides CG (1994) Identification of an immunodominant peptide of HER2/neu, protooncogene recognized by ovarian tumor specific T lymphocyte lines. J Exp Med 181:2109CrossRefGoogle Scholar
  58. 58.
    Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derive peptide. PNAS USA 92:432PubMedGoogle Scholar
  59. 59.
    Elkak A, Meligonis G, Salhab M, Mitchell B, Blake J, Newbold R, Mokbel K (2005) hTERT protein expression is independent of clinicopathological parameters and c-Myc protein expression in human breast cancer. J Carcinog 4:17CrossRefPubMedGoogle Scholar
  60. 60.
    Kirkpatrick KL, Ogunkolade W, Elkak AE et al. (2003) hTERT expression in human breast cancer and non-cancerous breast tissue: correlation with tumour stage and c-Myc expression. Breast Cancer Res Treat 77:277–284CrossRefPubMedGoogle Scholar
  61. 61.
    Ryan B, O’Donovan N, Browne B et al. (2005) Expression of survivin and its splice variants survivin-2B and survivin-DeltaEx3 in breast cancer. Br J Cancer 92:120–124CrossRefPubMedGoogle Scholar
  62. 62.
    Ballesta AM, Molina R, Filella X, Jo J, Gimenez N (1995) Carcinoembryonic antigen in staging and follow-up of patients with solid tumors. Tumor Biol 16:32–41Google Scholar
  63. 63.
    Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryotic antigen and HER2/neu by primary in vitro stimulation with peptide-pulsed dendritic cells. Cancer Res 59:431–435PubMedGoogle Scholar
  64. 64.
    Barratt-Boyes SM (1996) Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol Immunther 43:142–151CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Frauenklinik der Eberhard-Karls-Universität Tübingen
  2. 2.Frauenklinik der Eberhard-Karls-Universität TübingenTübingen

Personalised recommendations