Advertisement

Wiener klinisches Magazin

, Volume 22, Issue 1, pp 4–11 | Cite as

Intestinaler Crosstalk

Der Darm als Motor des Multiorganversagens
  • Wilfred DrumlEmail author
Intensivmedizin
  • 13 Downloads

Zusammenfassung

Die zentrale Rolle des Organsystems Darm für den Intensivpatienten ist erst im letzten Jahrzehnt voll erkannt worden. Der Darm ist ein entscheidendes immunologisches, metabolisches und neurologisches Organ, eine Störung seiner Funktionen korreliert mit Morbidität und Mortalität. Durch seine zentrale Stellung im Organ-Crosstalk hat jede Dysfunktion des Darms wesentliche Auswirkungen auf andere intra- und extraabdominelle Organe. Der Intestinaltrakt ist die wichtigste Quelle endogen auftretender Infektionen und bestimmt den inflammatorischen Status des Organismus. Das Darmversagen ist Teil des Multiorgandysfunktionssyndroms. Wichtigster Mechanismus der Entstehung endogener Infektionen ist die intestinale Translokation von Keimen. Eine Dysbiose und Schädigung der intestinalen Mukosa führt zu einer Störung der intestinalen Barrierefunktion, erhöht die Permeabilität und begünstigt eine Translokation („Leaky-gut-Hypothese“). Ein weiterer wichtiger Mechanismus der Organinteraktionen ist die Erhöhung des intraabdominellen Drucks. Eine intraabdominelle Hypertension führt zu einer weiteren Schädigung des Darms, zu einer Verstärkung der Translokation und Inflammation sowie zur Beeinträchtigung anderer Organsysteme wie der Niere, des Kreislaufs und der Lunge. Die Aufrechterhaltung bzw. Wiederherstellung der intestinalen Funktionen muss ein Ziel jeder Intensivtherapie sein. Wichtigste Maßnahme ist eine frühe enterale Ernährung. Andere Maßnahmen sind die Aufrechterhaltung der Motilität und die Modulation des intestinalen Mikrobioms. Eine intraabdominelle Hypertension muss konsequent durch eine individuell adaptierte Infusionstherapie, Lagerung des Patienten, Medikamentengabe (abdominelle Compliance) und Dekompression (durch Sonden, endoskopisch oder in schweren Fällen auch chirurgisch) behandelt werden.

Schlüsselwörter

Mikrobiom Bakterielle Translokation Intraabdominelle Hypertension Enterale Ernährung Probiotika 

Intestinal cross-talk

The gut as motor of multiple organ failure

Abstract

The central role of the organ system “gut” for critically ill patients has not been acknowledged until the last decade. The gut is a crucial immunologic, metabolic and neurologic organ system and impairment of its functions is associated with morbidity and mortality. The gut has a central position in the cross-talk between organs and dysfunction of the gut may result in impairment of other intra-abdominal and extra-abdominal organ systems. The intestinal tract is the most important source of endogenous infections and determines the inflammatory status of the organism. Gut failure is an element of the multiple organ dysfunction syndrome (MODS). The leading mechanism in the evolution of endogenous infections is the intestinal translocation of microbes. A dysbiosis and damage of the intestinal mucosa leads to a disorder of the mucosal barrier function, increases the permeability and promotes translocation (leaky gut hypothesis). A further crucial mechanism of organ interactions is the increase in intra-abdominal pressure. Intra-abdominal hypertension promotes further injury of the gut, increases translocation and inflammation and causes dysfunction of other organ systems, such as the kidneys, the cardiovascular system and the lungs. Maintaining and/or restoring intestinal functions must be a priority of any intensive care therapy. The most important measure is early enteral nutrition. Other measures are the preservation of motility and modulation of the intestinal microbiome. Intra-abdominal hypertension must be reduced by an individually adapted infusion therapy, positioning of the patient, administration of drugs (abdominal compliance) and decompression (by tubes, endoscopically or in severe cases surgically).

Keywords

Microbiome Bacterial translocation Intra-abdominal hypertension Enteral nutrition Probiotics 

Notes

Funding

Open access funding provided by Medical University of Vienna.

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Druml gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Deitch EA (2012) Gut-origin sepsis: Evolution of a concept. Surgeon 10(6):350–356CrossRefGoogle Scholar
  2. 2.
    de Jong PR, Gonzalez-Navajas JM, Jansen NJ (2016) The digestive tract as the origin of systemic inflammation. Crit Care 20(1):279CrossRefGoogle Scholar
  3. 3.
    Mittal R, Coopersmith CM (2014) Redefining the gut as the motor of critical illness. Trends Mol Med 20(4):214–223CrossRefGoogle Scholar
  4. 4.
    Reintam A, Parm P, Kitus R, Starkopf J, Kern H (2008) Gastrointestinal failure score in critically ill patients: A prospective observational study. Crit Care 12(4):R90CrossRefGoogle Scholar
  5. 5.
    Schorghuber M, Fruhwald S (2018) Effects of enteral nutrition on gastrointestinal function in patients who are critically ill. Lancet Gastroenterol Hepatol 3(4):281–287CrossRefGoogle Scholar
  6. 6.
    Klompas M, Speck K, Howell MD, Greene LR, Berenholtz SM (2014) Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: Systematic review and meta-analysis. Jama Intern Med 174(5):751–761CrossRefGoogle Scholar
  7. 7.
    Oostdijk EAN, Kesecioglu J, Schultz MJ, Visser CE, de Jonge E, van Essen EHR, Bernards AT, Purmer I, Brimicombe R, Bergmans D et al (2014) Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: A randomized clinical trial. JAMA 312(14):1429–1437CrossRefGoogle Scholar
  8. 8.
    Clark JA, Coopersmith CM (2007) Intestinal crosstalk: A new paradigm for understanding the gut as the “motor” of critical illness. Shock 28(4):384–393CrossRefGoogle Scholar
  9. 9.
    Badami CD, Senthil M, Caputo FJ, Rupani BJ, Doucet D, Pisarenko V, Xu DZ, Lu Q, Feinman R, Deitch EA (2008) Mesenteric lymph duct ligation improves survival in a lethal shock model. Shock 30(6):680–685CrossRefGoogle Scholar
  10. 10.
    Wischmeyer PE, McDonald D, Knight R (2016) Role of the microbiome, probiotics, and ‘dysbiosis therapy’ in critical illness. Curr Opin Crit Care 22(4):347–353CrossRefGoogle Scholar
  11. 11.
    McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, Lemieux M, Derenski K, King J, Vis-Kampen C et al (2016) Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 1(4).  https://doi.org/10.1128/mSphere.00199-16 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Morrow LE, Wischmeyer P (2017) Blurred lines: Dysbiosis and probiotics in the ICU. Chest 151(2):492–499CrossRefGoogle Scholar
  13. 13.
    Marshall JC, Christou NV, Meakins JL (1993) The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg 218(2):111–119CrossRefGoogle Scholar
  14. 14.
    Stenman LK, Holma R, Eggert A, Korpela R (2013) A novel mechanism for gut barrier dysfunction by dietary fat: Epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 304(3):G227–G234CrossRefGoogle Scholar
  15. 15.
    Kistler EB, Alsaigh T, Chang M, Schmid-Schonbein GW (2012) Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock. Shock 38(3):262–267CrossRefGoogle Scholar
  16. 16.
    Habes QLM, van Ede L, Gerretsen J, Kox M, Pickkers P (2018) Norepinephrine contributes to Enterocyte damage in septic shock patients: A prospective cohort study. Shock 49(2):137–143CrossRefGoogle Scholar
  17. 17.
    Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, Koenderman L, Kubes P, Lilford RJ (2014) The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet 384(9952):1455–1465CrossRefGoogle Scholar
  18. 18.
    Welsh FK, Farmery SM, MacLennan K, Sheridan MB, Barclay GR, Guillou PJ, Reynolds JV (1998) Gut barrier function in malnourished patients. Gut 42(3):396–401CrossRefGoogle Scholar
  19. 19.
    Roberts DJ, Ball CG, Kirkpatrick AW (2016) Increased pressure within the abdominal compartment: Intra-abdominal hypertension and the abdominal compartment syndrome. Curr Opin Crit Care 22(2):174–185PubMedGoogle Scholar
  20. 20.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC et al (2013) Intra-abdominal hypertension and the abdominal compartment syndrome: Updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 39(7):1190–1206CrossRefGoogle Scholar
  21. 21.
    Cheng J, Wei Z, Liu X, Li X, Yuan Z, Zheng J, Chen X, Xiao G, Li X (2013) The role of intestinal mucosa injury induced by intra-abdominal hypertension in the development of abdominal compartment syndrome and multiple organ dysfunction syndrome. Crit Care 17(6):R283CrossRefGoogle Scholar
  22. 22.
    Reintam Blaser A, Malbrain M, Regli A (2017) Abdominal pressure and gastrointestinal function: An inseparable couple? Anaesthesiol Intensive Ther 49(2):146–158CrossRefGoogle Scholar
  23. 23.
    Leng Y, Zhang K, Fan J, Yi M, Ge Q, Chen L, Zhang L, Yao G (2014) Effect of acute, slightly increased intra-abdominal pressure on intestinal permeability and oxidative stress in a rat model. PLoS ONE 9(10):e109350CrossRefGoogle Scholar
  24. 24.
    Kirkpatrick AW, Sugrue M, McKee JL, Pereira BM, Roberts DJ, De Waele JJ, Leppaniemi A, Ejike JC, Reintam Blaser A, D’Amours S et al (2017) Update from the Abdominal Compartment Society (WSACS) on intra-abdominal hypertension and abdominal compartment syndrome: Past, present, and future beyond Banff. Anaesthesiol Intensive Ther 49(2):83–87CrossRefGoogle Scholar
  25. 25.
    De Keulenaer B, Regli A, De Laet I, Roberts D, Malbrain ML (2015) What’s new in medical management strategies for raised intra-abdominal pressure: Evacuating intra-abdominal contents, improving abdominal wall compliance, pharmacotherapy, and continuous negative extra-abdominal pressure. Anaesthesiol Intensive Ther 47(1):54–62PubMedGoogle Scholar
  26. 26.
    Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, Van Regenmortel N (2014) Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: A systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 46(5):361–380CrossRefGoogle Scholar
  27. 27.
    Tasdogan M, Memis D, Sut N, Yuksel M (2009) Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis. J Clin Anesth 21(6):394–400CrossRefGoogle Scholar
  28. 28.
    Bodnar Z, Szentkereszty Z, Hajdu Z, Boissonneault GA, Sipka S (2011) Beneficial effects of theophylline infusions in surgical patients with intra-abdominal hypertension. Langenbecks Arch Surg 396(6):793–800CrossRefGoogle Scholar
  29. 29.
    De Waele JJ, Kimball E, Malbrain M, Nesbitt I, Cohen J, Kaloiani V, Ivatury R, Mone M, Debergh D, Bjorck M (2016) Decompressive laparotomy for abdominal compartment syndrome. Br J Surg 103(6):709–715CrossRefGoogle Scholar
  30. 30.
    Nguyen NQ, Chapman M, Fraser RJ, Bryant LK, Burgstad C, Holloway RH (2007) Prokinetic therapy for feed intolerance in critical illness: One drug or two? Crit Care Med 35(11):2561–2567CrossRefGoogle Scholar
  31. 31.
    Holzinger U, Brunner R, Miehsler W, Herkner H, Kitzberger R, Fuhrmann V, Metnitz PG, Kamolz LP, Madl C (2011) Jejunal tube placement in critically ill patients: A prospective, randomized trial comparing the endoscopic technique with the electromagnetically visualized method. Crit Care Med 39(1):73–77CrossRefGoogle Scholar
  32. 32.
    Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, Fruhwald S, Hiesmayr M, Ichai C, Jakob SM et al (2017) Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 43(3):380–398CrossRefGoogle Scholar
  33. 33.
    Luyer MD, Jacobs JA, Vreugdenhil AC, Hadfoune M, Dejong CH, Buurman WA, Greve JW (2004) Enteral administration of high-fat nutrition before and directly after hemorrhagic shock reduces endotoxemia and bacterial translocation. Ann Surg 239(2):257–264CrossRefGoogle Scholar
  34. 34.
    Patel JJ, Kozeniecki M, Biesboer A, Peppard W, Ray AS, Thomas S, Jacobs ER, Nanchal R, Kumar G (2016) Early trophic enteral nutrition is associated with improved outcomes in mechanically ventilated patients with septic shock: A retrospective review. J Intensive Care Med 31(7):471–477CrossRefGoogle Scholar
  35. 35.
    Patel JJ, Martindale RG, McClave SA (2017) Controversies surrounding critical care nutrition: An appraisal of permissive underfeeding, protein, and outcomes. Jpen J Parenter Enteral Nutr 148607117721908.  https://doi.org/10.1177/0148607117721908 CrossRefPubMedGoogle Scholar
  36. 36.
    Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK (2014) Parenteral glutamine supplementation in critical illness: A systematic review. Crit Care 18(2):R76CrossRefGoogle Scholar
  37. 37.
    Heyland DK, Dhaliwal R (2013) Role of glutamine supplementation in critical illness given the results of the REDOXS study. Jpen J Parenter Enteral Nutr 37(4):442–443CrossRefGoogle Scholar
  38. 38.
    van Zanten AR, Dhaliwal R, Garrel D, Heyland DK (2015) Enteral glutamine supplementation in critically ill patients: A systematic review and meta-analysis. Crit Care 19:294CrossRefGoogle Scholar
  39. 39.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME et al (2017) Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377CrossRefGoogle Scholar
  40. 40.
    Morowitz MJ, Di Caro V, Pang D, Cummings J, Firek B, Rogers MB, Ranganathan S, Clark RSB, Aneja RK (2017) Dietary supplementation with nonfermentable fiber alters the Gut Microbiota and confers protection in Murine Models of sepsis. Crit Care Med 45(5):e516–e523CrossRefGoogle Scholar
  41. 41.
    Klingensmith NJ, Coopersmith CM (2016) Fecal microbiota transplantation for multiple organ dysfunction syndrome. Crit Care 20(1):398CrossRefGoogle Scholar
  42. 42.
    McClave SA, Patel J, Bhutiani N (2018) Should fecal microbial transplantation be used in the ICU? Curr Opin Crit Care 24(2):105–111CrossRefGoogle Scholar
  43. 43.
    Juul FE, Garborg K, Bretthauer M, Skudal H, Oines MN, Wiig H, Rose O, Seip B, Lamont JT, Midtvedt T et al (2018) Fecal Microbiota transplantation for primary Clostridium difficile infection. N Engl J Med 378(26):2535–2536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Innere Medizin III, Abteilung für NephrologieAllgemeines Krankenhaus WienWienÖsterreich

Personalised recommendations