Advertisement

Liquid Biopsy in der Tumordiagnostik

Anwendungen, Perspektiven und Limitationen des Cancer Liquidome
  • Ulrich LehmannEmail author
  • Stephan Bartels
Pathologie
  • 11 Downloads

Zusammenfassung

Der Nachweis genetischer Veränderungen in Körperflüssigkeiten als Ergänzung oder gar Ersatz der konventionellen gewebebasierten Tumordiagnostik ist ein aktuell in Forschung und Industrie viel beachtetes und diskutiertes Thema. Technische Fortschritte in der Nukleinsäureanalytik im Verbund mit vielversprechenden Studienergebnissen haben sehr große Erwartungen geweckt bezüglich Früherkennung, Diagnostik, Prognostik und Monitoring von Tumorerkrankungen mithilfe einer minimalinvasiven Blutprobe. Einzelne fokussierte Assays haben bereits Eingang in die Routinediagnostik gefunden und stellen eine sinnvolle Ergänzung zur etablierten Tumordiagnostik dar, wenn eine Gewebeprobe nicht gewonnen werden kann. Vor einer Ausweitung des Einsatzes von Liquid Biopsy außerhalb von Studien und des Nachweises komplexer Marker im peripheren Blut (wie z. B. der Tumormutationslast) sind aber zahlreiche methodische Herausforderungen und konzeptionelle Probleme zu lösen. Der vorliegende Artikel konzentriert sich auf den Nachweis freier zirkulierender Tumor-DNA im Blutplasma und diskutiert kritisch Anwendungsfelder und Potenziale sowie Herausforderungen und Grenzen dieser Methodik.

Schlüsselwörter

DNA-Sequenzanalyse Freie zirkulierende Nukleinsäuren Krebsfrüherkennung Plasma Präzisionsmedizin 

Liquid biopsy in tumor diagnostics

Applications, perspectives, and limitations of the “cancer liquidome”

Abstract

The detection of tumor-specific genetic alterations in body fluids as an addition to or even replacement for established tissue-based tumor diagnostics is currently a hot topic in academic research and industry. Progress in methods for nucleic acid analyses together with promising results from clinical studies have raised great expectations for cancer screening, diagnosis, prognosis, and therapy monitoring by means of a minimally invasive blood draw. Individual focused assays have already been introduced into routine diagnostics and represent a valuable option in cases where no tissue samples are available. However, before the use of liquid biopsy outside of clinical studies is enforced and more complex markers (like tumor mutational burden) are analyzed, several practical challenges and principal problems have to be addressed. This review focusses on the detection of free-circulating nucleic acids in blood plasma and critically discusses established and future applications as well as challenges and limitations of this new method.

Keywords

DNA sequence analysis Circulating cell-free nucleic acids Early detection of cancer Plasma Precision medicine 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

U. Lehmann und S. Bartels geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Bartels S, Christgen M, Luft A et al (2018) Estrogen receptor (ESR1) mutation in bone metastases from breast cancer. Mod Pathol 31:56–61CrossRefGoogle Scholar
  2. 2.
    Bartels S, Persing S, Hasemeier B et al (2017) Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice: a cross-platform comparison of three different molecular methods for mutation detection. J Mol Diagn 19:722–732CrossRefGoogle Scholar
  3. 3.
    Brown HK, Tellez-Gabriel M, Cartron PF et al (2018) Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: myth or reality? Drug Discov Today 24:763–772CrossRefGoogle Scholar
  4. 4.
    Busque L, Patel JP, Figueroa ME et al (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44:1179–1181CrossRefGoogle Scholar
  5. 5.
    Cabel L, Proudhon C, Gortais H et al (2017) Circulating tumor cells: clinical validity and utility. Int J Clin Oncol 22:421–430CrossRefGoogle Scholar
  6. 6.
    Conrads TP, Zhou M, Petricoin EF 3rd et al (2003) Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 3:411–420CrossRefGoogle Scholar
  7. 7.
    Corcoran RB, Chabner BA (2018) Application of cell-free DNA analysis to cancer treatment. N Engl J Med 379:1754–1765CrossRefGoogle Scholar
  8. 8.
    Crowley E, Di Nicolantonio F, Loupakis F et al (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484CrossRefGoogle Scholar
  9. 9.
    De Rubis G, Rajeev Krishnan S, Bebawy M (2019) Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 136:35–44Google Scholar
  10. 10.
    Diamandis EP (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 3:367–378CrossRefGoogle Scholar
  11. 11.
    Fassunke J, Ihle MA, Lenze D et al (2017) EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial. Virchows Arch 471:509–520CrossRefGoogle Scholar
  12. 12.
    Fiala C, Diamandis EP (2018) Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med 16:166CrossRefGoogle Scholar
  13. 13.
    Griewank KG, Wiesner T, Murali R et al (2018) Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles. Mod Pathol 31:418–428CrossRefGoogle Scholar
  14. 14.
    Heitzer E, Haque IS, Roberts CES et al (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20:71–88CrossRefGoogle Scholar
  15. 15.
    Heuser M, Thol F, Ganser A (2016) Clonal Hematopoiesis of Indeterminate Potential. Dtsch Arztebl Int 113:317–322PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hsiao YC, Chu LJ, Chen JT et al (2017) Proteomic profiling of the cancer cell secretome: informing clinical research. Expert Rev Proteomics 14:737–756CrossRefGoogle Scholar
  17. 17.
    Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498CrossRefGoogle Scholar
  18. 18.
    Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121CrossRefGoogle Scholar
  19. 19.
    Ko J, Baldassano SN, Loh PL et al (2018) Machine learning to detect signatures of disease in liquid biopsies—a user’s guide. Lab Chip 18:395–405CrossRefGoogle Scholar
  20. 20.
    Leung F, Kulasingam V, Diamandis EP et al (2016) Circulating tumor DNA as a cancer biomarker: fact or fiction? Clin Chem 62:1054–1060CrossRefGoogle Scholar
  21. 21.
    Li BT, Stephens D, Chaft JE et al (2017) Liquid biopsy for ctDNA to revolutionize the care of patients with early stage lung cancers. Ann Transl Med 5:479CrossRefGoogle Scholar
  22. 22.
    Liu J, Chen X, Wang J et al (2018) Biological background of the genomic variations of cf-DNA in healthy individuals. Ann Oncol 30:464–470CrossRefGoogle Scholar
  23. 23.
    Lucchetti D, Fattorossi A, Sgambato A (2019) Extracellular vesicles in oncology: progress and pitfalls in the methods of isolation and analysis. Biotechnol J 14:e1700716CrossRefGoogle Scholar
  24. 24.
    Nilsson RJ, Karachaliou N, Berenguer J et al (2016) Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 7:1066–1075CrossRefGoogle Scholar
  25. 25.
    Ricciuti B, Baglivo S, Paglialunga L et al (2017) Osimertinib in patients with advanced epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer: rationale, evidence and place in therapy. Ther Adv Med Oncol 9:387–404CrossRefGoogle Scholar
  26. 26.
    Sole C, Arnaiz E, Manterola L et al (2019) The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin Cancer Biol.  https://doi.org/10.1016/j.semcancer.2019.01.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Stewart CM, Kothari PD, Mouliere F et al (2018) The value of cell-free DNA for molecular pathology. J Pathol 244:616–627CrossRefGoogle Scholar
  28. 28.
    Tong Y, Shen S, Jiang H et al (2017) Application of digital PCR in detecting human diseases associated gene mutation. Cell Physiol Biochem 43:1718–1730CrossRefGoogle Scholar
  29. 29.
    Torga G, Pienta KJ (2018) Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol 4:868–870CrossRefGoogle Scholar
  30. 30.
    Torga G, Pienta KJ (2018) Regarding the congruence between 2 circulating tumor DNA sequencing assays-reply. JAMA Oncol 4:1431–1432CrossRefGoogle Scholar
  31. 31.
    Wan JCM, Massie C, Garcia-Corbacho J et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238CrossRefGoogle Scholar
  32. 32.
    Zheng MM, Li YS, Jiang BY et al (2019) Brief report: clinical utility of cerebrospinal fluid cell free-DNA as liquid biopsy for leptomeningeal metastases in ALK-rearranged NSCLC. J Thorac Oncol.  https://doi.org/10.1016/j.jtho.2019.01.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für PathologieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations