Wiener klinisches Magazin

, Volume 17, Issue 1, pp 24–31

Flüssigkeits- und Volumentherapie 2013

Ein Spagat zwischen Physiologie, Evidenz und Politik
Intensivmedizin
  • 101 Downloads

Zusammenfassung

Hintergrund

Nachdem der Ausschuss für Risikobewertung (PRAC) der Europäischen Arzneimittelbehörde (EMA) am 14.06.2013 empfahl, die Zulassung für hydroxyethylstärkehaltige Präparate zurückzuziehen, wurde ein Revisionsverfahren initiiert, das in diesen Tagen der Europäischen Kommission zur endgültigen Entscheidungsfindung über die Zukunft dieser Präparateklasse vorliegt. Voraussichtlich werden die europäischen Kliniker im Bereich der Intensivmedizin künftig mit starken Beschränkungen leben müssen, für die blutungsbedingte Hypovolämie jedoch – und damit für den perioperativen und notfallmedizinischen Bereich – werden hydroxyethylstärkehaltige Präparate aller Voraussicht nach weiterhin zur Verfügung stehen.

Die Fakten

Messungen am Menschen konnten belegen, dass der Einsatz isotoner Kristalloide bei akuter Blutung allenfalls zu verzögerter Restitution des Blutvolumens führt. Isoonkotische Kolloide hingegen verbleiben zu einem hohen Prozentsatz intravasal. Unter dem Postulat, der Patient im hypovolämen Schock profitiere von der zeitnahen Stabilisierung seiner kardialen Vorlast, erscheinen isotone Kristalloide als Alternative zu Kolloiden daher nur wenig sinnvoll. Bis zum heutigen Tag ist auch die evidenzbasierte Medizin nicht in der Lage, von einem rationalen Kolloideinsatz zur frühen Stabilisierung im hypovolämen Schock abzuraten: Die kardiale Vorlast der meisten Patienten in allen Studien, die Hydroxyethylstärke (HES) mit negativen Effekten in Verbindung brachten, wurde primär, noch außerhalb der Studie, mit natürlichen und künstlichen Kolloiden stabilisiert. Der Einsatz dieser Präparateklasse mit dieser Indikation ist somit gut etabliert und kann anhand wissenschaftlicher Daten bislang kaum in Zweifel gezogen werden. Darüber hinaus zeigt die kürzlich publizierte CRISTAL-Studie an rund 3000 Intensivpatienten, die erstmals die Phase der initialen Stabilisierung schwerst schockierter Patienten mit abbilden konnte, einen signifikanten Vorteil der Verwendung von Kolloiden gegenüber Kristalloiden im 90-Tage-Überleben.

Schlussfolgerung

Die Datenlage zur Flüssigkeits- und Volumentherapie ist derzeit alles andere als trivial. Es ist erfreulich, dass die Europäische Kommission dieser Tatsache nach erneuter Sichtung aller verfügbaren Daten voraussichtlich durch ein relativ differenziertes Urteil Rechnung tragen wird.

Schlüsselwörter

Flüssigkeits- und Volumentherapie Isotone Kristalloide Isoonkotische Kolloide Hypovolämer Schock Hydroxyethylstärke 

Fluid and volume therapy in 2013

A balancing act between physiology, evidence, and policy

Abstract

Background

After the Pharmacovigilance Risk Assessment Committee (PRAC) of the European Medicines Agency (EMA) recommended on the 14th June 2013 to suspend marketing authorisations for solutions containing hydroxyethylstarch, a revision process was initiated which is with the European Commission to finally decide on the future of this class of drugs. It is expected that European clinicians will have to live with severe restrictions in the field of intensive care, for the perfusion-related hypovolemia, however – and thus for the perioperative andemergency medical field – hydroxyethyl starch-containing preparations will most likely continue to be available.

The facts

Measurements in humans have shown that the use of isotonic crystalloids in acute hemorrhage at best leads to delayed restitution of blood volume. Iso-oncotic colloids, however, remain to a high percentage intravascularly. Under the postulate that the patient in hypovolemic shock benefits from the timely stabilization of his cardiac preload, isotonic crystalloids therefore appear to be no appropriate alternative to colloids.To date, evidence-based medicine is not capable of advising against a rational colloid for early stabilisation in hypovolemic shock: cardiac preload of most patients in all studies which associated hydroxyethyl starch (HES) with negative effects, was primarily stabilized with natural and artificial colloids, however, outside the study. The use of this therapeutic class for this indication is therefore well established and can hardly be questioned on the basis of scientific data so far. In addition, the recently published CRISTAL trial, which for the first time pictured the phase of initial stabilization of severely shocked patients, showed in around 3,000 ICU patients a significant benefit for the use of colloids over crystalloids in 90-day survival rate.

Conclusion

The data situation for fluid and volume therapy is currently all but trivial. It is good to see that after re-examinating all available data, the European Commission will most possibly take these facts into account and provide a relatively differentiated judgement.

Keywords

Fluid and volume therapy Isotonic crystalloids Isooncotic colloids Hypovolemic shock Hydroxyethyl starch 

Literatur

  1. 1.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228PubMedCrossRefGoogle Scholar
  2. 2.
    http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Hydroxyethyl_starch-containing_solutions/human_referral_prac_000012.jsp&mid=WC0b01ac05805c516fGoogle Scholar
  3. 3.
    http://www.bfarm.de/DE/Pharmakovigilanz/risikoinfo/2013/RI-hes2.htmlGoogle Scholar
  4. 4.
    http://www.mhra.gov.uk/NewsCentre/Pressreleases/CON287028Google Scholar
  5. 5.
    Starling E (1986) On the absorption of fluid from the connective tissue spaces. J Physiol (Lond) 19:312–326Google Scholar
  6. 6.
    Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701PubMedCrossRefGoogle Scholar
  7. 7.
    Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210PubMedCrossRefGoogle Scholar
  8. 8.
    Jacob M, Bruegger D, Rehm M et al (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586PubMedCrossRefGoogle Scholar
  9. 9.
    Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701PubMedCrossRefGoogle Scholar
  10. 10.
    Jacob M, Rehm M, Loetsch M et al (2007) The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res 44:435–443PubMedCrossRefGoogle Scholar
  11. 11.
    Jacob M, Chappell D (2013) Reappraising starling – the physiology of the microcirculation. Curr Opin Crit Care 19:282–289PubMedCrossRefGoogle Scholar
  12. 12.
    Rehm M, Bruegger D, Christ F et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906PubMedCrossRefGoogle Scholar
  13. 13.
    Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR (2011) A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg 254:194–200PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson A, Berkestedt I, Schmidtchen A et al (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30:623–627PubMedCrossRefGoogle Scholar
  15. 15.
    Jacob M, Chappell D, Hofmann-Kiefer K et al (2012) The intravascular volume effect of Ringer’s lactate is below 20 %: a prospective study in humans. Crit Care 16:R86PubMedCrossRefGoogle Scholar
  16. 16.
    Jacob M, Rehm M, Orth V et al (2003) Exact measurement of the volume effect of 6 % hydoxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist 52:896–904PubMedCrossRefGoogle Scholar
  17. 17.
    Rehm M, Orth V, Kreimeier U et al (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664PubMedCrossRefGoogle Scholar
  18. 18.
    Rehm M, Haller M, Orth V et al (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5 % albumin or 6 % hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856PubMedCrossRefGoogle Scholar
  19. 19.
    Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999PubMedCrossRefGoogle Scholar
  20. 20.
    Volta CA, Alvisi V, Campi M et al (2007) Influence of different strategies of volume replacement on the activity of matrix metalloproteinases: an in vitro and in vivo study. Anesthesiology 106:85–91PubMedCrossRefGoogle Scholar
  21. 21.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  22. 22.
    Corcoran T, Rhodes JE, Clarke S et al (2012) Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 114:640–651PubMedCrossRefGoogle Scholar
  23. 23.
    Chappell D, Jacob M, Hofmann-Kiefer K et al (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740PubMedCrossRefGoogle Scholar
  24. 24.
    Chappell D, Jacob M (2012) Protocols, physiology, and trials of hydroxyethyl starch. N Engl J Med 367:1266PubMedGoogle Scholar
  25. 25.
    o A (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Cochrane Injuries Group Albumin Reviewers. BMJ 317:235–240CrossRefGoogle Scholar
  26. 26.
    Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256PubMedCrossRefGoogle Scholar
  27. 27.
    Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139PubMedCrossRefGoogle Scholar
  28. 28.
    Reinhart K, Perner A, Sprung CL et al (2012) Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med 38:368–383PubMedCrossRefGoogle Scholar
  29. 29.
    Zacharowski K, Van AH, Marx G et al (2012) Comments on Reinhart et al.: consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med 38:1556–1557PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    o A (1992) Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 268:2420–2425CrossRefGoogle Scholar
  31. 31.
    Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S-2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e. V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinare Vereinigung fur Intensiv- und Notfallmedizin (DIVI)). Ger Med Sci 8:Doc14PubMedCentralPubMedGoogle Scholar
  32. 32.
    http://www.dgthg.de/sites/default/files/S2LL%20DiagnTherapSepsis.pdfGoogle Scholar
  33. 33.
    http://www.uni-duesseldorf.de/AWMF/ll/079-001.pdf. Anaesthesie und Intensivmed 2010Google Scholar
  34. 34.
    Myburgh JA, Finfer S, Bellomo R et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911PubMedCrossRefGoogle Scholar
  35. 35.
    Guidet B, Martinet O, Boulain T et al (2012) Assessment of hemodynamic efficacy and safety of 6 % hydroxyethylstarch 130/0.4 vs. 0.9 % NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16:R94PubMedCrossRefGoogle Scholar
  36. 36.
    Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134PubMedCrossRefGoogle Scholar
  37. 37.
    Chappell D, Jacob M (2013) Hydroxyethyl starch – the importance of being earnest. Scand J Trauma Resusc Emerg Med 21:61PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    http://www.awmf.org/leitlinien/detail/anmeldung/1/ll/001-020.htmlGoogle Scholar
  39. 39.
    Annane D, Siami S, Jaber S et al (2013) CRISTAL Investigators. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310:1809–1817PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Klinik für AnaesthesiologieKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations