Wiener klinisches Magazin

, Volume 15, Issue 6, pp 10–18

Epigenetik in der Onkologie

Von Gen-Umwelt Interaktionen zu neuen Medikamenten
  • Stefan Kubicek
  • Erika Schirghuber
  • Freya Klepsch
  • Jacques Colinge
  • Stefan Kubicek
forschung
  • 111 Downloads

Zusammenfassung

Epigenetik befasst sich mit vererbbaren Chromatinstrukturen und Genexpressionsmustern, die nicht auf Alterationen im Genom selbst beruhen. Epigenetische Prozesse steuern dabei die Entstehung der über 200 unterschiedlichen Zelltypen im menschlichen Körper, welche alle idente genetische Information tragen. Dieselben Vorgänge tragen zur Initiierung und zum Verlauf von Krebserkrankungen bei, auch wenn solche immer mit Veränderungen der DNA Sequenz verbunden sind. Wir beschreiben das Wechselspiel zwischen Genetik und Epigenetik und zeigen, dass Veränderungen in der Chromatinstruktur und Genexpression Ursache, Mediator und Konsequenz von genomischen Instabilitäten sein können. Chromatinmodifizierende Enzyme sind demnach potentielle Targets für die Entwicklung neuer Therapeutika. Substanzen für zwei Enzymklassen ­ HistonDeacetylasen und DNAMethyltransferasen ­ sind bereits in der Onkologie zugelassen und eine Vielzahl neuer Wirkstoffe ist momentan in präklinischer und klinischer Entwicklung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Allis CD, Jenuwein T, & Reinberg D (2007) Epigenetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) pp x, 502 p.Google Scholar
  2. 2.
    Luger K, Mader AW, Richmond RK, Sargent DF, & Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260 (in eng). sai]3._Talbert PB & Henikoff S (2010) Histone variants-ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275 (in eng).PubMedCrossRefGoogle Scholar
  3. 4.
    Baylin SB & Jones PA (2011) A decade of exploring the cancer epigenome — biological and translational implications. Nat Rev Cancer 11(10):726–734 (in eng).PubMedCrossRefGoogle Scholar
  4. 5.
    Kriaucionis S & Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930 (in eng)PubMedCrossRefGoogle Scholar
  5. 6.
    Tahiliani M, et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935 (in eng).PubMedCrossRefGoogle Scholar
  6. 7.
    Wu H & Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452 (in eng).PubMedCrossRefGoogle Scholar
  7. 8.
    Tan M, et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028 (in eng).PubMedCrossRefGoogle Scholar
  8. 9.
    Jenuwein T & Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080 (in eng).PubMedCrossRefGoogle Scholar
  9. 10.
    Schreiber SL & Bernstein BE (2002) Signaling network model of chromatin. Cell 111(6):771–778 (in eng).PubMedCrossRefGoogle Scholar
  10. 11.
    Arrowsmith CH, Bountra C, Fish PV, Lee K, & Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400 (in eng).PubMedCrossRefGoogle Scholar
  11. 12.
    Hargreaves DC & Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420 (in eng).PubMedCrossRefGoogle Scholar
  12. 13.
    Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674 (in eng).PubMedCrossRefGoogle Scholar
  13. 14.
    Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70 (in eng).PubMedCrossRefGoogle Scholar
  14. 15.
    Blech J (2010) Der Sieg über die Gene: Das Gedächtnis des Körpers. Der Spiegel 32:110.Google Scholar
  15. 16.
    Pogribny IP, et al. (2009) Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res 669(1–2):56–62 (in eng).PubMedGoogle Scholar
  16. 17.
    Poirier LA (1994) Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev 26(1–2):185–199 (in eng).PubMedCrossRefGoogle Scholar
  17. 18.
    Feinberg AP & Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153 (in eng).PubMedCrossRefGoogle Scholar
  18. 19.
    Hardy TM & Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518 (in eng).PubMedCrossRefGoogle Scholar
  19. 20.
    Shyh-Chang N, et al. (2012) Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation. Science (in Eng).Google Scholar
  20. 21.
    Yan H, et al. (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773 (in eng).PubMedCrossRefGoogle Scholar
  21. 22.
    Mardis ER, et al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066 (in eng).PubMedCrossRefGoogle Scholar
  22. 23.
    Dang L, et al. (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744 (in eng).PubMedCrossRefGoogle Scholar
  23. 24.
    Xu W, et al. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30 (in eng).PubMedCrossRefGoogle Scholar
  24. 25.
    Sasaki M, et al. (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049 (in eng).PubMedCrossRefGoogle Scholar
  25. 26.
    Sasaki M, et al. (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659 (in eng).PubMedCrossRefGoogle Scholar
  26. 27.
    Dawson MA & Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27 (in eng).PubMedCrossRefGoogle Scholar
  27. 28.
    Kooistra SM & Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13(5):297–311 (in eng).PubMedCrossRefGoogle Scholar
  28. 29.
    Greer EL & Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357 (in eng).PubMedCrossRefGoogle Scholar
  29. 30.
    You JS & Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1):9–20 (in eng).PubMedCrossRefGoogle Scholar
  30. 31.
    Chi P, Allis CD, & Wang GG (2010) Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469 (in eng).PubMedCrossRefGoogle Scholar
  31. 32.
    Krivtsov AV & Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833 (in eng).PubMedCrossRefGoogle Scholar
  32. 33.
    Bernt KM & Armstrong SA (2011) Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program 2011:354–360 (in eng).PubMedCrossRefGoogle Scholar
  33. 34.
    Wang GG, et al. (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851 (in eng).PubMedCrossRefGoogle Scholar
  34. 35.
    Margueron R & Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349 (in eng).PubMedCrossRefGoogle Scholar
  35. 36.
    Morin RD, et al. (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303 (in eng).PubMedCrossRefGoogle Scholar
  36. 37.
    Sneeringer CJ, et al. (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107(49):20980–20985 (in eng).PubMedCrossRefGoogle Scholar
  37. 38.
    French CA (2010) Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol 63(6):492–496 (in eng).PubMedCrossRefGoogle Scholar
  38. 39.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874 (in eng).PubMedCrossRefGoogle Scholar
  39. 40.
    Allis CD & Muir TW (2011) Spreading chromatin into chemical biology. Chembiochem 12(2):264–279 (in eng).PubMedCrossRefGoogle Scholar
  40. 41.
    Copeland RA, Solomon ME, & Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732 (in eng).PubMedCrossRefGoogle Scholar
  41. 42.
    Fierz B & Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8(5):417–427 (in eng).PubMedCrossRefGoogle Scholar
  42. 43.
    Biel M, Wascholowski V, & Giannis A (2005) Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 44(21):3186–3216 (in eng).PubMedCrossRefGoogle Scholar
  43. 44.
    Voigt P & Reinberg D (2011) Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 12(2):236–252 (in eng).PubMedCrossRefGoogle Scholar
  44. 45.
    Geutjes EJ, Bajpe PK, & Bernards R (2012) Targeting the epigenome for treatment of cancer. Oncogene 31(34):3827–3844 (in eng).PubMedCrossRefGoogle Scholar
  45. 46.
    Marks PA (2007) Discovery and development of SAHA as an anticancer agent. Oncogene 26(9):1351–1356 (in eng).PubMedCrossRefGoogle Scholar
  46. 47.
    Campas-Moya C (2009) Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc) 45(11):787–795 (in eng).Google Scholar
  47. 48.
    Nebbioso A, Carafa V, Benedetti R, & Altucci L (2012) Trials with ‘epigenetic’ drugs: An update. Mol Oncol (in Eng).Google Scholar
  48. 49.
    Bradner JE, et al. (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243 (in Eng).PubMedCrossRefGoogle Scholar
  49. 50.
    Kubicek S, et al. (2012) Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci U S A 109(14):5364–5369 (in eng).PubMedCrossRefGoogle Scholar
  50. 51.
    Issa JP & Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946 (in eng).PubMedCrossRefGoogle Scholar
  51. 52.
    Filippakopoulos P, et al. (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073 (in eng).PubMedCrossRefGoogle Scholar
  52. 53.
    Nicodeme E, et al. (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123 (in eng).PubMedCrossRefGoogle Scholar
  53. 54.
    Dawson MA, et al. (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533 (in eng).PubMedCrossRefGoogle Scholar
  54. 55.
    Zuber J, et al. (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524–528 (in eng).PubMedCrossRefGoogle Scholar
  55. 56.
    Mertz JA, et al. (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 108(40):16669–16674 (in eng).PubMedCrossRefGoogle Scholar
  56. 57.
    Delmore JE, et al. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917 (in eng).PubMedCrossRefGoogle Scholar
  57. 58.
    Kubicek S, et al. (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481 (in eng).PubMedCrossRefGoogle Scholar
  58. 59.
    Vedadi M, et al. (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7(8):566–574 (in eng).PubMedCrossRefGoogle Scholar
  59. 60.
    Copeland RA, Moyer MP, & Richon VM (2012) Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics. Oncogene (in Eng).Google Scholar
  60. 61.
    McCabe MT, et al. (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature (in Eng).Google Scholar
  61. 62.
    Knutson SK, et al. (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8(11):890–896 (in eng).PubMedGoogle Scholar
  62. 63.
    Luo X, et al. (2011) A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J Am Chem Soc 133(24):9451–9456 (in eng).PubMedCrossRefGoogle Scholar
  63. 64.
    Kruidenier L, et al. (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488(7411):404–408 (in eng).PubMedCrossRefGoogle Scholar
  64. 65.
    van Haaften G, et al. (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523 (in eng).PubMedCrossRefGoogle Scholar
  65. 66.
    Bock C (2009) Epigenetic biomarker development. Epigenomics 1(1):99–110 (in eng).PubMedCrossRefGoogle Scholar
  66. 67.
    Sandoval J & Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55 (in eng).PubMedCrossRefGoogle Scholar
  67. 68.
    Esteller M, et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354 (in eng).PubMedCrossRefGoogle Scholar
  68. 69.
    Fernandez AF, et al. (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407–419 (in eng).PubMedCrossRefGoogle Scholar
  69. 70.
    Seligson DB, et al. (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266 (in eng).PubMedCrossRefGoogle Scholar
  70. 71.
    Herceg Z & Hainaut P (2007) Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 1(1):26–41 (in eng).PubMedCrossRefGoogle Scholar
  71. 72.
    Fathi AT, et al. (2012) Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood (in Eng).Google Scholar
  72. 73.
    Nicholls SJ, et al. (2012) ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther 26(2):181–187 (in eng).PubMedCrossRefGoogle Scholar
  73. 74.
    Matzuk MM, et al. (2012) Small-molecule inhibition of BRDT for male contraception. Cell 150(4):673–684 (in eng).PubMedCrossRefGoogle Scholar
  74. 75.
    Orkin SH & Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145(6):835–850 (in eng).PubMedCrossRefGoogle Scholar
  75. 76.
    Lehner B, Crombie C, Tischler J, Fortunato A, & Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38(8):896–903 (in eng).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Stefan Kubicek
    • 1
  • Erika Schirghuber
    • 1
  • Freya Klepsch
    • 1
  • Jacques Colinge
    • 1
  • Stefan Kubicek
    • 1
  1. 1.CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesWienDeutschland

Personalised recommendations