Archives of Women's Mental Health

, Volume 17, Issue 2, pp 87–95 | Cite as

Systematic review of gamma-aminobutyric-acid inhibitory deficits across the reproductive life cycle

  • Simone N. Vigod
  • Kate Strasburg
  • Zafiris J. Daskalakis
  • Daniel M. Blumberger
Original Article


Deficiencies in the inhibitory functioning of gamma-aminobutyric acid (GABA) have been implicated in the pathophysiology of depressive disorders. Reproductive life cycle events, including menstruation, pregnancy, and menopause, are consistently associated with increased psychopathology, in particular mood disorders. Given that GABA-inhibitory activity may be modulated directly or indirectly by estrogen, progesterone, and their metabolites receptors, it has been hypothesized that GABA deficits may be evident during these reproductive periods. We aimed to compare GABA function among women during these “high-risk” reproductive periods to GABA function among women at other time periods. We conducted a systematic review of studies comparing women during reproductive life stages associated with depressive disorder risk (luteal phase of the menstrual cycle, perinatal period, and menopausal transition) to women at other time periods. The study outcome was GABA function. The review included 11 studies, 9 focused on the menstrual cycle, and 2 focused on the perinatal period. GABA-inhibitory function fluctuated across the menstrual cycle, with differing patterns in women with and without depressive disorders. GABA-inhibitory function was reduced in pregnancy and early postpartum compared to the nonpregnant state. Key limitations were the absence of studies evaluating the menopausal transition, and the heterogeneity of GABA outcome measures. GABA-inhibitory function fluctuates across the menstrual cycle and is reduced perinatally. This has potential implications for a role of GABAergically mediated interventions in the prevention and treatment of menstrual cycle-related and perinatal depressive disorders.


GABA Perinatal Menstrual cycle Menopause Depressive disorders 

Supplementary material

737_2013_403_MOESM1_ESM.pdf (16 kb)
Supplemental Table 1(PDF 16 kb)


  1. Abou-Saleh MT, Ghubash R et al (1998) Hormonal aspects of postpartum depression. Psychoneuroendocrinology 23(5):465–475PubMedCrossRefGoogle Scholar
  2. Altemus M, Fong J et al (2004) Changes in cerebrospinal fluid neurochemistry during pregnancy. Biol Psychiatry 56(6):386–392PubMedCrossRefGoogle Scholar
  3. Amin Z, Mason GF et al (2006) The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacol, Biochem Behav 84(4):635–643CrossRefGoogle Scholar
  4. Andreen L, Nyberg S et al (2009) Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 34(8):1121–1132PubMedCrossRefGoogle Scholar
  5. Bailara KM, Henry C et al (2006) Decreased brain tryptophan availability as a partial determinant of post-partum blues. Psychoneuroendocrinology 31(3):407–413PubMedCrossRefGoogle Scholar
  6. Bajbouj M, Lisanby SH et al (2006) Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol Psychiatry 59(5):395–400PubMedCrossRefGoogle Scholar
  7. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358(1):55–68PubMedCrossRefGoogle Scholar
  8. Bloch M, Daly RC et al (2003) Endocrine factors in the etiology of postpartum depression. Compr Psychiatry 44(3):234–246PubMedCrossRefGoogle Scholar
  9. Bloch M, Schmidt PJ et al (2000) Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry 157(6):924–930PubMedCrossRefGoogle Scholar
  10. Corwin EJ, Johnston N et al (2008) Symptoms of postpartum depression associated with elevated levels of interleukin-1 beta during the first month postpartum. Biol Res Nurs 10(2):128–133PubMedCrossRefGoogle Scholar
  11. Croarkin PE, Levinson AJ et al (2011) Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev 35(3):818–825PubMedCrossRefGoogle Scholar
  12. Doornbos B, Fekkes D et al (2008) Sequential serotonin and noradrenalin associated processes involved in postpartum blues. Prog Neuropsychopharmacol Biol Psychiatry 32(5):1320–1325PubMedCrossRefGoogle Scholar
  13. Epperson CN, Gueorguieva R et al (2006) Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study. Psychopharmacology 186(3):425–433PubMedCrossRefGoogle Scholar
  14. Epperson CN, Haga K et al (2002) Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59(9):851–858PubMedCrossRefGoogle Scholar
  15. Freeman EW (2010) Associations of depression with the transition to menopause. Menopause 17(4):823–827PubMedCrossRefGoogle Scholar
  16. Freeman EW, Frye CA et al (2002) Allopregnanolone levels and symptom improvement in severe premenstrual syndrome. J Clin Psychopharmacol 22(5):516–520PubMedCrossRefGoogle Scholar
  17. Freeman EW, Sammel MD et al (2013) Longitudinal pattern of depressive symptoms around natural menopause. JAMA Psychiatry 70(12):1312–1319CrossRefGoogle Scholar
  18. Groer MW, Morgan K (2007) Immune, health and endocrine characteristics of depressed postpartum mothers. Psychoneuroendocrinology 32(2):133–139PubMedCrossRefGoogle Scholar
  19. Halbreich U, Petty F et al (1996) Low plasma gamma-aminobutyric acid levels during the late luteal phase of women with premenstrual dysphoric disorder. Am J Psychiatry 153(5):718–720PubMedGoogle Scholar
  20. Harada M, Kubo H et al (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32(5):828–833PubMedCrossRefGoogle Scholar
  21. Harris B, Lovett L et al (1996) Cardiff puerperal mood and hormone study. III. Postnatal depression at 5 to 6 weeks postpartum, and its hormonal correlates across the peripartum period. Br J Psychiatry 168(6):739–744PubMedCrossRefGoogle Scholar
  22. Hattemer K, Knake S et al (2007) Excitability of the motor cortex during ovulatory and anovulatory cycles: a transcranial magnetic stimulation study. Clin Endocrinol (Oxf) 66(3):387–393CrossRefGoogle Scholar
  23. Hausmann M, Tegenthoff M et al (2006) Transcallosal inhibition across the menstrual cycle: a TMS study. Clin Neurophysiol 117(1):26–32PubMedCrossRefGoogle Scholar
  24. Hayes LP, Carroll DG et al (2011) Use of gabapentin for the management of natural or surgical menopausal hot flashes. Ann Pharmacother 45(3):388–394PubMedCrossRefGoogle Scholar
  25. Inghilleri M, Conte A et al (2004) Ovarian hormones and cortical excitability. An rTMS study in humans. Clin Neurophysiol 115(5):1063–1068PubMedCrossRefGoogle Scholar
  26. Kessler RC, McGonagle KA et al (1993) Sex and depression in the national comorbidity survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord 29(2–3):85–96PubMedCrossRefGoogle Scholar
  27. Klier CM, Muzik M et al (2007) The role of estrogen and progesterone in depression after birth. J Psychiatr Res 41(3–4):273–279PubMedCrossRefGoogle Scholar
  28. Le Melledo JM, Van Driel M et al (2000) Response to flumazenil in women with premenstrual dysphoric disorder. Am J Psychiatry 157(5):821–823PubMedCrossRefGoogle Scholar
  29. Lepine JP, Briley M (2011) The increasing burden of depression. Neuropsychiatr Dis Treat 7(Suppl 1):3–7PubMedCentralPubMedGoogle Scholar
  30. Levinson AJ, Fitzgerald PB et al (2010) Evidence of cortical inhibitory deficits in major depressive disorder. Biol Psychiatry 67(5):458–464PubMedCrossRefGoogle Scholar
  31. Luo Y, Zheng LZ et al (2007) Relationship between the levels of estradiol and monoamine neurotransmitters and postpartum depression. Zhonghua Fu Chan Ke Za Zhi 42(11):745–748PubMedGoogle Scholar
  32. Maes M, Ombelet W et al (2001) Effects of pregnancy and delivery on the availability of plasma tryptophan to the brain: relationships to delivery-induced immune activation and early post-partum anxiety and depression. Psychol Med 31(5):847–858PubMedGoogle Scholar
  33. Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38(4):379–395PubMedCrossRefGoogle Scholar
  34. Majewska MD, Harrison NL et al (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232(4753):1004–1007PubMedCrossRefGoogle Scholar
  35. Maurer-Spurej E, Pittendreigh C et al (2007) Platelet serotonin levels support depression scores for women with postpartum depression. J Psychiatry Neurosci 32(1):23–29PubMedCentralPubMedGoogle Scholar
  36. Mileva-Seitz V, Steiner M et al (2013) Interaction between oxytocin genotypes and early experience predicts quality of mothering and postpartum mood. PLoS One 8(4):e61443PubMedCentralPubMedCrossRefGoogle Scholar
  37. Moher D, Liberati A et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedCentralPubMedCrossRefGoogle Scholar
  38. Murphy-Eberenz K, Zandi PP et al (2006) Is perinatal depression familial? J Affect Disord 90(1):49–55PubMedCrossRefGoogle Scholar
  39. Nierop A, Bratsikas A et al (2006) Are stress-induced cortisol changes during pregnancy associated with postpartum depressive symptoms? Psychosom Med 68(6):931–937PubMedCrossRefGoogle Scholar
  40. O’Hara MW, Schlechte JA et al (1991) Controlled prospective study of postpartum mood disorders: psychological, environmental, and hormonal variables. J Abnorm Psychol 100(1):63–73PubMedCrossRefGoogle Scholar
  41. Parry BL, Meliska CJ et al (2008) Plasma melatonin circadian rhythm disturbances during pregnancy and postpartum in depressed women and women with personal or family histories of depression. Am J Psychiatry 165(12):1551–1558PubMedCentralPubMedCrossRefGoogle Scholar
  42. Payne JL, Palmer JT et al (2009) A reproductive subtype of depression: conceptualizing models and moving toward etiology. Harv Rev Psychiatry 17(2):72–86PubMedCentralPubMedCrossRefGoogle Scholar
  43. Payne JL, Roy PS et al (2007) Reproductive cycle-associated mood symptoms in women with major depression and bipolar disorder. J Affect Disord 99(1–3):221–229PubMedCrossRefGoogle Scholar
  44. Pedersen CA, Johnson JL et al (2007) Antenatal thyroid correlates of postpartum depression. Psychoneuroendocrinology 32(3):235–245PubMedCrossRefGoogle Scholar
  45. Richter MA, de Jesus DR et al (2012) Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology 37(5):1144–1151PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sacher J, Wilson AA et al (2010) Elevated brain monoamine oxidase A binding in the early postpartum period. Arch Gen Psychiatry 67(5):468–474PubMedCrossRefGoogle Scholar
  47. Sanjuan J, Martin-Santos R et al (2008) Mood changes after delivery: role of the serotonin transporter gene. Br J Psychiatry 193(5):383–388PubMedCrossRefGoogle Scholar
  48. Skalkidou A, Sylven SM et al (2009) Risk of postpartum depression in association with serum leptin and interleukin-6 levels at delivery: a nested case-control study within the UPPSAT cohort. Psychoneuroendocrinology 34(9):1329–1337PubMedCrossRefGoogle Scholar
  49. Skrundz M, Bolten M et al (2011) Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology 36(9):1886–1893PubMedCentralPubMedCrossRefGoogle Scholar
  50. Smith MJ, Adams LF et al (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51(5):599–603PubMedCrossRefGoogle Scholar
  51. Smith MJ, Adams LF et al (2003) Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biol Psychiatry 54(7):757–762PubMedCrossRefGoogle Scholar
  52. Smith MJ, Keel JC et al (1999) Menstrual cycle effects on cortical excitability. Neurology 53(9):2069–2072PubMedCrossRefGoogle Scholar
  53. Sundstrom I, Andersson A et al (1998) Patients with premenstrual syndrome have a different sensitivity to a neuroactive steroid during the menstrual cycle compared to control subjects. Neuroendocrinology 67(2):126–138PubMedCrossRefGoogle Scholar
  54. Sundstrom I, Ashbrook D et al (1997) Reduced benzodiazepine sensitivity in patients with premenstrual syndrome: a pilot study. Psychoneuroendocrinology 22(1):25–38PubMedCrossRefGoogle Scholar
  55. Sundstrom I, Backstrom T (1998) Citalopram increases pregnanolone sensitivity in patients with premenstrual syndrome: an open trial. Psychoneuroendocrinology 23(1):73–88PubMedCrossRefGoogle Scholar
  56. Vigod SN, Frey BN et al (2010) Approach to premenstrual dysphoria for the mental health practitioner. Psychiatr Clin North Am 33(2):257–272PubMedCrossRefGoogle Scholar
  57. von Elm E, Altman DG et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370(9596):1453–1457CrossRefGoogle Scholar
  58. Wissart J, Parshad O et al (2005) Prevalence of pre- and postpartum depression in Jamaican women. BMC Pregnancy Childbirth 5:15PubMedCentralPubMedCrossRefGoogle Scholar
  59. Yim IS, Glynn LM et al (2009) Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy. Arch Gen Psychiatry 66(2):162–169PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Simone N. Vigod
    • 1
    • 2
  • Kate Strasburg
    • 1
  • Zafiris J. Daskalakis
    • 1
    • 3
  • Daniel M. Blumberger
    • 1
    • 3
  1. 1.Department of Psychiatry, Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Women’s College Hospital and Women’s College Research InstituteTorontoCanada
  3. 3.Campbell Family Research Institute and Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthTorontoCanada

Personalised recommendations