Amino Acids

pp 1–11 | Cite as

Synthesis, protonation constants and biological activity determination of amino acid–salicylaldehyde-derived Schiff bases

  • Claudia FattuoniEmail author
  • Sarah Vascellari
  • Tiziana PivettaEmail author
Original Article


Schiff bases represent a class of molecules widely studied for their importance in organic and coordination chemistry. Despite the large amount of studies on the chemical and biological properties of the Schiff bases, the different experimental conditions prevent a useful comparison to search for a correlation structure–activity. Moreover, literature is lacking in comprehensive data on the spectroscopic characterization of these compounds. For this reason, six Schiff bases, derived from salicylaldehyde and natural amino acids were fully characterized by nuclear magnetic resonance and infrared spectroscopy, and their aqueous solution equilibria, antiproliferative activity and DNA-binding activity were examined. All experimental conditions were kept constants to achieve comparable information and useful insights about their structure–activity correlation. The synthesized compounds showed DNA binding constants in the 101–102 M−1 range, depending on the substituent present in the amino acid side-chain, and resulted devoid of significant cytotoxic activity against the different human tumor cell lines showing IC50 values higher than 100 µM.


Schiff bases l-Amino acids DNA binding Cytotoxicity Aqueous solution equilibria 


Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

726_2019_2816_MOESM1_ESM.docx (5.5 mb)
Supplementary file1 (DOCX 5676 kb)


  1. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM (2014) Synthesis of isatin thiosemicarbazones derivatives: in vitro anti-cancer, DNA binding and cleavage activities. Spectrochim Acta A Mol Biomol Spectrosc 125:440–448. CrossRefPubMedGoogle Scholar
  2. Antony R, Arun T, Manickam STD (2019) A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 129:615–633. CrossRefPubMedGoogle Scholar
  3. Arshad N, Ahmad M, Ashraf MZ, Nadeem H (2014) Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone. J Photochem Photobiol B Biol 138:331–346. CrossRefGoogle Scholar
  4. Babu MSS, Reddy KH, Krishna PG (2007) Synthesis, characterization, DNA interaction and cleavage activity of new mixed ligand copper(II) complexes with heterocyclic bases. Polyhedron 26:572–580. CrossRefGoogle Scholar
  5. Banti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N (2019) Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J Inorg Biochem 194:114–152CrossRefGoogle Scholar
  6. Canel E, Gültepe A, Doğan A, Kilıç E (2006) The determination of protonation constants of some amino acids and their esters by potentiometry in different media. J Solut Chem 35:5–19. CrossRefGoogle Scholar
  7. Chow MJ, Licona C, Wong DYQ, Pastorin G, Gaiddon C, Ang WH (2014) Discovery and investigation of anticancer ruthenium–arene Schiff-base complexes via water-promoted combinatorial three-component assembly. J Med Chem 57:6043–6059. CrossRefPubMedGoogle Scholar
  8. Dalapati S, Jana S, Guchhait N (2014) Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta Part A Mol Biomol Spectrosc 129:499–508. CrossRefGoogle Scholar
  9. Dossetter AG, Jamison TF, Jacobsen EN (1999) Highly enantio- and diastereoselective hetero-Diels-Alder reactions catalyzed by new chiral tridentate chromium (III) catalysts. Angew Chem Int Ed Engl 38:2398–2400.;2-e CrossRefPubMedGoogle Scholar
  10. El-Sherif AA, Aljahdali MS (2013) Review: protonation, complex-formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. J Coord Chem 66:3423–3468. CrossRefGoogle Scholar
  11. Ershov AY, Nasledov DG, Nasonova KV, Sezyavina KV, Susarova TV, Lagoda IV, Shamanin VV (2013) Ring-chain tautomerism of 2-aryl-6-oxohexahydropyrimidine-4-carboxylic acid sodium salts. Chem Heterocycl Compd 49:640–645. CrossRefGoogle Scholar
  12. Galić N, Cimerman Z, Tomišić V (1997) Tautomeric and protonation equilibria of Schiff bases of salicylaldehyde with aminopyridines. Anal Chim Acta 343:135–143. CrossRefGoogle Scholar
  13. Gans P, O’Sullivan B (2000) GLEE, a new computer program for glass electrode calibration. Talanta 51:33–37. CrossRefPubMedGoogle Scholar
  14. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the hyperquad suite of programs. Talanta 43:1739–1753. CrossRefPubMedGoogle Scholar
  15. Gomes LMF, Vieira RP, Jones MR, Wang MCP, Dyrager C, Souza-Fagundes EM et al (2014) 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J Inorg Biochem 139:106–116. CrossRefPubMedGoogle Scholar
  16. Gowri M, Jayabalakrishnan C (2012) DNA binding and cytotoxicity of newly synthesized Schiff base (Z)-4-(((2-hydroxyphenyl)amino)(phenyl)methylene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and its analogues. Int J Appl Biol Pharm Technol 3:327–337Google Scholar
  17. Gran G (1952) Determination of the equivalence point in potentiometric titrations-Part II. Analyst 77:771CrossRefGoogle Scholar
  18. Hiskey RG, Jung JM (1963) Azomethine chemistry. II. Formation of peptides from oxazolidine-5-ones. J Am Chem Soc 85:578–582. CrossRefGoogle Scholar
  19. Hsieh SH, Kuo YP, Gau HM (2007) Synthesis, characterization, and structures of oxovanadium(V) complexes of Schiff bases of beta-amino alcohols as tunable catalysts for the asymmetric oxidation of organic sulfides and asymmetric alkynylation of aldehydes. Dalton Trans. CrossRefPubMedGoogle Scholar
  20. Latt SA, Stetten G, Juergens LA, Willard HF, Scher CD (1975) Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J Histochem Cytochem 23:493–505. CrossRefPubMedGoogle Scholar
  21. Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon JR (2018) Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: synthesis, functional materials properties, and applications to catalysis. Coord Chem Rev 357:144–172CrossRefGoogle Scholar
  22. Liu S, Peng J, Yang H, Bai Y, Li J, Lai G (2012) Highly efficient and convenient asymmetric hydrosilylation of ketones catalyzed with zinc Schiff base complexes. Tetrahedron 68:1371–1375. CrossRefGoogle Scholar
  23. Malik MA, Dar OA, Gull P, Wani MY, Hashmi AA (2018) Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Med Chem Commun 9:409–436. CrossRefGoogle Scholar
  24. Malinowski ER (2002) Factor analysis in chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  25. Maurya MR, Kumar U, Correia I, Adão P, Costa Pessoa J (2008) A polymer-bound oxidovanadium(IV) complex prepared from an l-cysteine-derived ligand for the oxidative amination of styrene. Eur J Inorg Chem. CrossRefGoogle Scholar
  26. Metzler CM, Cahill A, Metzler DE (1980) Equilibria and absorption spectra of Schiff bases. J Am Chem Soc 102:6075–6082. CrossRefGoogle Scholar
  27. Michałowicz J, Duda W (2007) Phenols-sources and toxicity. Polish J Environ Stud 16:347–362Google Scholar
  28. Murmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. CrossRefGoogle Scholar
  29. Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (1999) Asymmetric synthesis of β-lactams by Staudinger Ketene-imine cycloaddition reaction. Eur J Org Chem.;2-1 CrossRefGoogle Scholar
  30. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P et al (1988) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 20:309–321. CrossRefPubMedGoogle Scholar
  31. Pessoa JC, Mannar MR (2017) Vanadium complexes supported on organic polymers as sustainable systems for catalytic oxidations. Inorg Chim Acta 455:415–428CrossRefGoogle Scholar
  32. Pillai MRA, Kothari K, Banerjee S, Samuel G, Suresh M, Sarma HD, Jurisson S (1999) Radiochemical studies of 99mTc complexes of modified cysteine ligands and bifunctional chelating agents. Nucl Med Biol 26:555–561CrossRefGoogle Scholar
  33. Pivetta T, Trudu F, Valletta E, Isaia F, Castellano C, Demartin F et al (2014) Novel copper(II) complexes as new promising antitumour agents. A crystal structure of [Cu(1,10-phenanthroline-5,6-dione)2(OH2)(OClO3)](ClO4). J Inorg Biochem 141:103–113. CrossRefPubMedGoogle Scholar
  34. Pivetta T, Valletta E, Ferino G, Isaia F, Pani A, Vascellari S, Castellano C, Demartin F, Cabiddu MG, Cadoni E (2017) Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity. J Inorg Biochem 177:101–109. CrossRefPubMedGoogle Scholar
  35. Qiao X, Ma ZY, Xie CZ, Xue F, Zhang YW, Xu JY et al (2011) Study on potential antitumor mechanism of a novel Schiff base copper(II) complex: synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. J Inorg Biochem 105:728–737. CrossRefPubMedGoogle Scholar
  36. Qin W, Long S, Panunzio M, Biondi S (2013) Schiff bases: a short survey on an evergreen chemistry tool. Molecules 18:12264–12289. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rajesh CM, Ray M (2014) Characterization of a meso-chiral isomer of a hexanuclear Cu(II) cage from racemization of the l-alanine Schiff base. Dalton Trans 43:12952–12960. CrossRefPubMedGoogle Scholar
  38. Rao G, Philipp M (1991) Boronic acid catalyzed hydrolyses of salicylaldehyde imines. J Org Chem 56:1505–1512. CrossRefGoogle Scholar
  39. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053. CrossRefGoogle Scholar
  40. Saleem H, Erdogdu Y, Subashchandrabose S, Thanikachalam V, Jayabharathi J, Ramesh Babu N (2012) Structural and vibrational studies on (E)-2-(2-hydroxybenzylidenamino)-3-phenylpropionic acid using experimental and DFT methods. J Mol Struct 1030:157–167. CrossRefGoogle Scholar
  41. Smith HE, Burrows EP, Marks MJ, Lynch RD, Chen FM (1977) Optically active amines. 22. Application of the salicylidenimino chirality rule to α-amino acids. J Am Chem Soc 2:707–713. CrossRefGoogle Scholar
  42. Turan B, Şendil K, Şengül E, Gültekin MS, Taslimi P, Gulcin I, Supuran CT (2016) The synthesis of some β- lactams and investigation of their metal-chelating activity, carbonic anhydrase and acetylcholinesterase inhibition profiles. J Enzyme Inhib Med Chem 31 (sup1):79–88CrossRefGoogle Scholar
  43. Türkoğlu G, Berber H, Dal H, Öğretir C (2011) Synthesis, characterization, tautomerism and theoretical study of some new Schiff base derivatives. Spectrochim Acta A Mol Biomol Spectrosc 79:1573–1583. CrossRefPubMedGoogle Scholar
  44. Vilanova B, Gallardo J, Caldés C, Adrover M, Ortega-Castro J, Muñoz F et al (2012) Formation of Schiff bases of O-phosphorylethanolamine and O-phospho-d, l-serine with pyridoxal 5′-phosphate. Experimental and theoretical studies. J Phys Chem A 116:1897–1905. CrossRefPubMedGoogle Scholar
  45. Yang ZY, Yang RD, Li FS, Yu KB (2000) Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. Polyhedron 19:2599–2604. CrossRefGoogle Scholar
  46. Yoo J, Cui Q (2008) Does arginine remain protonated in the lipid membrane? Insights from microscopic pKa calculations. Biophys J Biophys Lett 94:L61–63. CrossRefGoogle Scholar
  47. Zhang N, Fan Y, Zhang Z, Zuo J, Zhang P, Wang Q et al (2012) Syntheses, crystal structures and anticancer activities of three novel transition metal complexes with Schiff base derived from 2-acetylpyridine and l-tryptophan. Inorg Chem Commun 22:68–72. CrossRefGoogle Scholar
  48. Zhong X, Yi J, Sun J, Wei HL, Liu WS, Yu KB (2006) Synthesis and crystal structure of some transition metal complexes with a novel bis-Schiff base ligand and their antitumor activities. Eur J Med Chem 41:1090–1092. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemical and Geological SciencesUniversity of Cagliari, Cittadella UniversitariaCagliariItaly
  2. 2.Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaCagliariItaly

Personalised recommendations