Amino Acids

pp 1–11 | Cite as

Synthesis of homoagmatine and GC–MS analysis of tissue homoagmatine and agmatine: evidence that homoagmatine but not agmatine is a metabolite of pharmacological L-homoarginine in the anesthetized rat

  • Dimitrios TsikasEmail author
  • Alexander Bollenbach
  • Erik Hanff
  • Bibiana Beckmann
  • Björn Redfors
Original Article


Low L-homoarginine (hArg) concentrations in human blood and urine are associated with renal and cardiovascular morbidity and mortality, yet the underlying mechanisms and the biological activities of hArg are elusive. In humans and rats, hArg is metabolized to l-lysine. The aim of the present work was to study hArg metabolism to agmatine (Agm) and homoagmatine (hAgm) in the anesthetized rat. Using a newly developed and validated GC–MS method and a newly synthesized and structurally characterized hAgm we investigated the metabolism of i.p. administered hArg (0, 20, 220, 440 mg/kg) to hAgm and Agm in lung, kidney, liver and heart in anesthetized rats. Our study provides unequivocal evidence that hArg is metabolized to hAgm but not to Agm. Whether hAgm derived from hArg’s metabolism may contribute to the pathophysiological significance of endogenous hArg and for the favoured effects of pharmacological hArg remains to be demonstrated. The biology of hArg warrants further investigations.


AGAT Amino acids GC–MS Organs Polyamines 



l-Arginine decarboxylase


l-Arginine:glycine amidinotransferase






Gas chromatography–mass spectrometry








Lower limit of quantitation (LLOQ)


Mass-to-charge ratio


Nitric oxide synthase


Nitric oxide


l-Ornithine decarboxylase


Peak area ratio




Pentafluoropropionic anhydride




Selected-ion monitoring




Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

Rats received humane care and the study protocol complied with the institutional guidelines of the Sahlgrenska University Hospital.

Supplementary material

726_2019_2808_MOESM1_ESM.pdf (562 kb)
Supplementary material 1 (PDF 561 kb)


  1. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403CrossRefGoogle Scholar
  2. Akasaka N, Fujiwara S (2019) The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids. CrossRefPubMedGoogle Scholar
  3. Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS, Heine CL, Kuro-O M, Pieske B, Schmidt K, Tomaschitz A, Maerz W, Pilz S, Meinitzer A, Voelkl J, Lang F (2016) Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 110:408–418CrossRefGoogle Scholar
  4. Atzler D, Schwedhelm E, Choe CU (2015) L-homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care 18:83–88CrossRefGoogle Scholar
  5. Atzler D, Schönhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC, Gerloff C, Jaehde U, Jagodzinski A, Böger RH, Choe CU, Schwedhelm E (2016) Oral supplementation with L-homoarginine in young volunteers. Br J Clin Pharmacol 82:1477–1485CrossRefGoogle Scholar
  6. Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, Salas M, López V, García-Robles M, Dodd PR, Schenk G, Carvajal N, Uribe E (2018) Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism 81:35–44CrossRefGoogle Scholar
  7. Berkels R, Taubert D, Gründemann D, Schömig E (2004) Agmatine signaling: odds and threads. Cardiovasc Drug Rev 22:7–16CrossRefGoogle Scholar
  8. Blantz RC, Satriano J, Gabbai F, Kelly C (2000) Biological effects of arginine metabolites. Acta Physiol Scand 168:21–25CrossRefGoogle Scholar
  9. Bollenbach A, Cordts K, Hanff E, Atzler D, Choe CU, Schwedhelm E, Tsikas D (2019) Evidence by GC–MS that lysine is an arginase-catalyzed metabolite of homoarginine in vitro and in vivo in humans. Anal Biochem 577:59–66CrossRefGoogle Scholar
  10. Frenay ARS, Kayacelebi AA, Beckmann B, Soedamah-Muhtu SS, de Borst MH, van den Berg E, van Goor H, Bakker SJL, Tsikas D (2015) High urinary homoarginine excretion is associated with low rates of all-cause mortality and graft failure in renal transplant recipients. Amino Acids 47(9):1827–1836CrossRefGoogle Scholar
  11. Galea E, Regunathan S, Eliopoulos V, Feinstein DL, Reis DJ (1996) Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 316(Pt 1):247–249CrossRefGoogle Scholar
  12. Gao Y, Gumusel B, Koves G, Prasad A, Hao Q, Hyman A, Lippton H (1995) Agmatine: a novel endogenous vasodilator substance. Life Sci 57:PL83–PL86CrossRefGoogle Scholar
  13. Grancara S, Ohkubo S, Artico M, Ciccariello M, Manente S, Bragadin M, Toninello A, Agostinelli E (2016) Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids 48:2313–2326CrossRefGoogle Scholar
  14. Günes DN, Kayacelebi AA, Hanff E, Lundgren J, Redfors B, Tsikas D (2017) Metabolism and distribution of pharmacological homoarginine in plasma and main organs of the anesthetized rat. Amino Acids 49:2033–2044CrossRefGoogle Scholar
  15. Halaris A, Zhu H, Feng Y, Piletz JE (1999) Plasma agmatine and platelet imidazoline receptors in depression. Ann N Y Acad Sci 881:445–451CrossRefGoogle Scholar
  16. Hanff E, Bollenbach A, Beckmann B, Brunner G, Tsikas D (2019a) GC-MS measurement of spermidine and putrescine in serum of elderly subjects: intriguing association between spermidine and homoarginine. Amino Acids. CrossRefPubMedGoogle Scholar
  17. Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Höynck F, von Kaisenberg C, Haffner D, Ückert S, Tsikas D (2019b) Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: evidence of altered methylation, transamidination, and arginase activity. Amino Acids 51:529–547CrossRefGoogle Scholar
  18. Hegstrand LR (1985) A direct, sensitive microassay for mammalian histidine decarboxylase. Biochem Pharmacol 34:3711–3716CrossRefGoogle Scholar
  19. Hesterberg RS, Cleveland JL, Epling-Burnette PK (2018) Role of polyamines in immune cell functions. Med Sci 6(1):E22. CrossRefGoogle Scholar
  20. Hussain T, Tan B, Ren W, Rahu N, Kalhoro DH, Yin Y (2017) Exploring polyamines: functions in embryo/fetal development. Anim Nutr. 3:7–10CrossRefGoogle Scholar
  21. Karetnikova ES, Jarzebska N, Markov AG, Weiss N, Lentz SR, Rodionov RN (2019) Is homoarginine a protective cardiovascular risk factor? Arterioscler Thromb Vasc Biol 39:869–875CrossRefGoogle Scholar
  22. Kayacelebi AA, Langen J, Weigt-Usinger K, Chobanyan-Jürgens K, Mariotti F, Schneider JY, Rothmann S, Frölich JC, Atzler D, Choe C, Schwedhelm E, Huneau JF, Lücke T, Tsikas D (2015) Biosynthesis of homoarginine (hArg) and asymmetric dimethylarginine (ADMA) from acutely and chronically administered free l-arginine in humans. Amino Acids 47(9):1893–1908CrossRefGoogle Scholar
  23. Kayacelebi AA, Minović I, Hanff E, Frenay ARS, de Borst MH, Feelisch M, van Goor H, Bakker SJL, Tsikas D (2017) Low plasma homoarginine concentration is associated with high rates of all-cause mortality in renal transplant recipients. Amino Acids 49(7):1193–1202CrossRefGoogle Scholar
  24. Laube G, Bernstein HG (2017) Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 474:2619–2640CrossRefGoogle Scholar
  25. Maltsev AV, Evdokimovskii EV, Kokoz YM (2019) Synergism of myocardial β-adrenoceptor blockade and I1-imidazoline receptor-driven signaling: kinase-phosphatase switching. Biochem Biophys Res Commun 511:363–368CrossRefGoogle Scholar
  26. Nguyen HO, Goracke-Postle CJ, Kaminski LL, Overland AC, Morgan AD, Fairbanks CA (2003) Neuropharmacokinetic and dynamic studies of agmatine (decarboxylated arginine). Ann N Y Acad Sci 1009:82–105CrossRefGoogle Scholar
  27. Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J, März W, Tomaschitz A (2015) Homoarginine in the renal and cardiovascular systems. Amino Acids 47:1703–1713CrossRefGoogle Scholar
  28. Popolo A, Adesso S, Pinto A, Autore G, Marzocco S (2014) l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 46:2271–2286CrossRefGoogle Scholar
  29. Raghavan SA, Dikshit M (2004) Vascular regulation by the l-arginine metabolites, nitric oxide and agmatine. Pharmacol Res 49:397–414CrossRefGoogle Scholar
  30. Ramakrishna S, Adiga PR (1973) Homoagmatine from Lathyrus sativus seedlings. Phytochemistry 12:2691–2695CrossRefGoogle Scholar
  31. Ramani D, De Bandt JP, Cynober L (2014) Aliphatic polyamines in physiology and diseases. Clin Nutr 33:14–22CrossRefGoogle Scholar
  32. Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R (2019) Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr 6:24. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Redfors B, Oras J, Shao Y, Seemann-Lodding H, Ricksten SE, Omerovic E (2014) Cardioprotective effects of isoflurane in a rat model of stress-induced cardiomyopathy (takotsubo). Int J Cardiol 176:815–821CrossRefGoogle Scholar
  34. Srivenugopal KS, Adiga PR (1980) Partial purification and properties of a transamidinase from Lathyrus sativus seedlings. Involvement in homoarginine metabolism and amine interconversions. Biochem J. 189:553–560CrossRefGoogle Scholar
  35. Su RB, Li J, Qin BY (2003) A biphasic opioid function modulator: agmatine. Acta Pharmacol Sin 24:631–636PubMedGoogle Scholar
  36. Tommasi S, Elliot DJ, Da Boit M, Gray SR, Lewis BC, Mangoni AA (2018) Homoarginine and inhibition of human arginase activity: kinetic characterization and biological relevance. Sci Rep 8:3697CrossRefGoogle Scholar
  37. Velásquez RD, Brunner G, Varrentrapp M, Tsikas D, Frölich JC (1996) Helicobacter pylori produces histamine and spermidine. Z Gastroenterol 34:116–122PubMedGoogle Scholar
  38. Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84PubMedGoogle Scholar
  39. Wu N, Su RB, Li J (2008) Agmatine and imidazoline receptors: their role in opioid analgesia, tolerance and dependence. Cell Mol Neurobiol 28:629–641CrossRefGoogle Scholar
  40. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168CrossRefGoogle Scholar
  41. Zinellu A, Paliogiannis P, Carru C, Mangoni AA (2018) Homoarginine and all-cause mortality: a systematic review and meta-analysis. Eur J Clin Invest 48:e12960CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Toxicology, Core Unit Proteomics, Core Unit ProteomicsHannover Medical SchoolHannoverGermany
  2. 2.Institute of Occupational MedicineHannover Medical SchoolHannoverGermany
  3. 3.Department of CardiologySahlgrenska University HospitalGothenburgSweden

Personalised recommendations