Advertisement

Amino Acids

, Volume 51, Issue 10–12, pp 1561–1568 | Cite as

PlantAFP: a curated database of plant-origin antifungal peptides

  • Atul TyagiEmail author
  • Vaishali Pankaj
  • Sanjay Singh
  • Sudeep Roy
  • Manoj Semwal
  • Ajit K. Shasany
  • Ashok SharmaEmail author
Original Article

Abstract

Emerging infectious diseases (EIDs) are a severe problem caused by fungi in human and plant species across the world. They pose a worldwide threat to food security as well as human health. Fungal infections are increasing now day by day worldwide, and the current antimycotic drugs are not effective due to the emergence of resistant strains. Therefore, it is an urgent need for the finding of new plant-origin antifungal peptides (PhytoAFPs). Huge numbers of peptides were extracted from different plant species which play a protective role against fungal infection. Hundreds of plant-origin peptides with antifungal activity have already been reported. So there is a requirement of a dedicated platform which systematically catalogs plant-origin peptides along with their antifungal properties. PlantAFP database is a resource of experimentally verified plant-origin antifungal peptides, collected from research articles, patents, and public databases. The current release of PlantAFP database contains 2585 peptide entries among which 510 are unique peptides. Each entry provides comprehensive information of a peptide that includes its peptide sequence, peptide name, peptide class, length of the peptide, molecular mass, antifungal activity, and origin of peptides. Besides this primary information, PlantAFP stores peptide sequences in SMILES format. In order to facilitate the user, many tools have been integrated into this database that includes BLAST search, peptide search, SMILES search, and peptide-mapping is also included in the database. PlantAFP database is accessible at http://bioinformatics.cimap.res.in/sharma/PlantAFP/.

Keywords

Plant defensins Innate immunity Plant host defense peptides Antimicrobial peptides HDPs AMP PhytoAFP 

Notes

Acknowledgements

The authors gratefully acknowledge the support provided by the CSIR- Central Institute of Medicinal and Aromatic Plants (CIMAP) and Jawaharlal Nehru University (JNU), New Delhi. Author (Atul Tyagi) is thankful to Indian Council of Medical Research (Project No. BIC/11(34)/2014) New Delhi, India, for ICMR-SRF fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The article does not contain any studies in patients/animal by any of the authors.

Informed consent

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Supplementary material

726_2019_2792_MOESM1_ESM.xls (183 kb)
Supplementary material 1 (XLS 183 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/s0022-2836(05)80360-2 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barbosa Pelegrini P, del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011Google Scholar
  3. Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3(4):57Google Scholar
  4. Brahmachary M, Krishnan S, Koh JLY, Khan AM, Seah SH, Tan TW, Brusic V, Bajic VB (2004) ANTIMIC: a database of antimicrobial sequences. Nucleic acids research 32(suppl_1):D586–D589PubMedPubMedCentralGoogle Scholar
  5. Broekaert WF, Terras F, Cammue B, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108(4):1353PubMedPubMedCentralGoogle Scholar
  6. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Design 81(1):136–147Google Scholar
  7. De Beer A, Vivier MA (2011) Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 4(1):459PubMedPubMedCentralGoogle Scholar
  8. De Lucca AJ, Walsh TJ (1999) Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrobial agents and chemotherapy 43(1):1–11PubMedPubMedCentralGoogle Scholar
  9. Devocelle M (2012) Targeted antimicrobial peptides. Front Immunol 3:309PubMedPubMedCentralGoogle Scholar
  10. Duncan VM, O’Neil DA (2013) Commercialization of antifungal peptides. Fungal Biol Rev 26(4):156–165Google Scholar
  11. Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H, Xu H (2016) DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep 6:24482PubMedPubMedCentralGoogle Scholar
  12. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186PubMedGoogle Scholar
  13. Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23(9):1148–1155PubMedPubMedCentralGoogle Scholar
  14. Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA (2013) A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834(8):1615–1623Google Scholar
  15. Hammami R, Ben Hamida J, Vergoten G, Fliss I (2008) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic acids research 37(suppl_1):D963–D968PubMedPubMedCentralGoogle Scholar
  16. Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25(6):933–944Google Scholar
  17. Knogge W (1996) Fungal infection of plants. The Plant Cell 8(10):1711PubMedPubMedCentralGoogle Scholar
  18. Kuć J (1982) Induced immunity to plant disease. Bioscience 32(11):854–860Google Scholar
  19. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11(1):23–27PubMedGoogle Scholar
  20. Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zárate L, Villagómez-Gómez E, López-Meza JE, Ochoa-Zarzosa A (2008) Thionin Thi2. 1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 30(10):1713PubMedGoogle Scholar
  21. Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301PubMedGoogle Scholar
  22. Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374PubMedGoogle Scholar
  23. Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, Vries RP, Haarmann T, Hansen K, Hertz-Fowler C (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol 3(1):6PubMedPubMedCentralGoogle Scholar
  24. Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270(1):1–11PubMedGoogle Scholar
  25. Neumann GM, Condron R, Polya GM (1996) Purification and mass spectrometry-based sequencing of yellow mustard (Sinapis alba L.) 6 kDa proteins Identification as antifungal proteins. Int J Peptide Protein Res 47(6):437–446Google Scholar
  26. Omidvar R, Xia Y, Porcelli F, Bohlmann H, Veglia G (2016) NMR structure and conformational dynamics of AtPDFL2. 1, a defensin-like peptide from Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1864(12):1739–1747Google Scholar
  27. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae Hippocastanaceae and Saxifragaceae. FEBS letters 368(2):257–262PubMedGoogle Scholar
  28. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B Biol Sci 365(1554):3065–3081Google Scholar
  29. Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from Gram-positive bacteria. Prokaryotic antimicrobial peptides. Springer, New York, pp 29–53Google Scholar
  30. Remuzgo C, Oewel TS, Daffre S, Lopes TR, Dyszy FH, Schreier S, Machado-Santelli GM, Machini MT (2014) Chemical synthesis, structure–activity relationship, and properties of shepherin I: a fungicidal peptide enriched in glycine-glycine-histidine motifs. Amino Acids 46(11):2573–2586PubMedGoogle Scholar
  31. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46(11):941–950PubMedPubMedCentralGoogle Scholar
  32. Shi L, Zhang Q, Rui W, Lu M, Jing X, Shang T, Tang J (2004) BioPD: a web-based information center for bioactive peptides. Regul Peptides 120(1–3):1–3Google Scholar
  33. Shuping D, Eloff JN (2017) The use of plants to protect plants and food against fungal pathogens: a review. Afr J Trad Complem Altern Med 14(4):120Google Scholar
  34. Terras F, Schoofs H, De Bolle M, Van Leuven F, Rees SB, Vanderleyden J, Cammue B, Broekaert WF (1992a) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. Journal of biological Chemistry 267 (22):15301-15309Google Scholar
  35. Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992b) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant physiology 100 (2):1055-1058PubMedPubMedCentralGoogle Scholar
  36. Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS letters 316(3):233–240PubMedGoogle Scholar
  37. Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. The Plant Cell 7(5):573–588PubMedPubMedCentralGoogle Scholar
  38. Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids 2012Google Scholar
  39. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A, Raghava GP (2014) CancerPPD: a database of anticancer peptides and proteins. Nucleic acids research 43(D1):D837–D843PubMedPubMedCentralGoogle Scholar
  40. Vriens K, Cools TL, Harvey PJ, Craik DJ, Braem A, Vleugels J, De Coninck B, Cammue BP, Thevissen K (2016) The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 75:71–79PubMedGoogle Scholar
  41. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic acids research 42(D1):D1154–D1158PubMedGoogle Scholar
  42. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32(suppl_1):D590–D592PubMedPubMedCentralGoogle Scholar
  43. Wang G, Li X, Wang Z (2008) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(suppl_1):D933–D937PubMedPubMedCentralGoogle Scholar
  44. Wang G, Li X, Wang Z (2015) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093PubMedPubMedCentralGoogle Scholar
  45. Wang J, Yin T, Xiao X, He D, Xue Z, Jiang X, Wang Y (2018) StraPep: a structure database of bioactive peptides. Database 2018Google Scholar
  46. Zareie R, Melanson DL, Murphy PJ (2002) Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact 15(10):1031–1039PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biotechnology DivisionCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia
  2. 2.Amity Institute of BiotechnologyAmity UniversityLucknowIndia
  3. 3.Department of Biomedical Engineering, Faculty of Electrical Engineering and communicationBrno University of Technology-Techicka-10BrnoCzech Republic

Personalised recommendations