Skip to main content
Log in

High plasma guanidinoacetate-to-homoarginine ratio is associated with high all-cause and cardiovascular mortality rate in adult renal transplant recipients

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Arginine:glycine amidinotransferase (AGAT) is the main producer of the creatine precursor, guanidinoacetate (GAA), and l-homoarginine (hArg). We and others previously reported lower levels of circulating and urinary hArg in renal transplant recipients (RTR) compared to healthy subjects. In adults, hArg emerged as a novel risk factor for renal and cardiovascular adverse outcome. Urinary GAA was found to be lower in children and adolescents with kidney transplants compared to healthy controls. Whether GAA is also a risk factor in the renal and cardiovascular systems of adults, is not yet known. In the present study, we aimed to investigate the significance of circulating GAA and the GAA-to-hArg molar ratio (GAA/hArg) in adult RTR. We hypothesized that GAA/hArg represents a measure of the balanced state of the AGAT activity in the kidneys, and would prospectively allow assessing a potential association between GAA/hArg and long-term outcome in RTR. The median follow-up period was 5.4 years. Confounders and potential mediators of GAA/hArg associations were evaluated with multivariate linear regression analyses, and the association with all-cause and cardiovascular mortality or death-censored graft loss was studied with Cox regression analyses. The study cohort consisted of 686 stable RTR and 140 healthy kidney donors. Median plasma GAA concentration was significantly lower in the RTR compared to the kidney donors before kidney donation: 2.19 [1.77–2.70] µM vs. 2.78 [2.89–3.35] µM (P < 0.001). In cross-sectional multivariable analyses in RTR, HDL cholesterol showed the strongest association with GAA/hArg. In prospective analyses in RTR, GAA/hArg was associated with a higher risk for all-cause mortality (hazard ratio (HR): 1.35 [95% CI 1.19–1.53]) and cardiovascular mortality (HR: 1.46 [95% CI 1.24–1.73]), independent of potential confounders. GAA but not GAA/hArg was associated with death-censored graft loss in crude survival and Cox regression analyses. The association of GAA and death-censored graft loss was lost after adjustment for eGFR. Our study suggests that in the kidneys of RTR, the AGAT-catalyzed biosynthesis of GAA is decreased. That high GAA/hArg is associated with a higher risk for all-cause and cardiovascular mortality may suggest that low plasma hArg is a stronger contributor to these adverse outcomes in RTR than GAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

AGAT:

Arginine:glycine amidinotransferase

BSA:

Body surface area

BMI:

Body mass index

CI:

Confidence interval

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

GAA:

Guanidinoacetate

hArg:

Homoarginine

HR:

Hazard ratio

IQR:

Interquartile range

MMF:

Mycophenolate mofetil

NO:

Nitric oxide

NOS:

Nitric oxide synthase

eNOS:

Endothelial nitric oxide synthase

NT-pro-BNP:

N-Terminal pro-hormone of brain natriuretic peptide

PTH:

Parathyroid hormone

QC:

Quality control

RTR:

Renal transplant recipients

References

  • Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS, Heine CL, Kuro OM, Pieske B, Schmidt K, Tomaschitz A, März W, Pilz S, Meinitzer A, Voelkl J, Lang F (2016) Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 110(3):408–418. https://doi.org/10.1093/cvr/cvw062

    Article  CAS  PubMed  Google Scholar 

  • Altmann U, Böger CA, Farkas S, Mack M, Luchner A, Hamer OW, Zeman F, Debl K, Fellner C, Jungbauer C, Banas B, Buchner S (2017) Effects of reduced kidney function because of living kidney donation on left ventricular mass. Hypertension 69(2):297–303. https://doi.org/10.1161/HYPERTENSIONAHA.116.08175

    Article  CAS  PubMed  Google Scholar 

  • Andrade F, Rodriguez-Soriano J, Prieto JA, Elorz J, Aguirre M, Ariceta G, Martin S, Sanjurjo P, Aldamiz-Echevarria L (2008) The arginine-creatine pathway is disturbed in children and adolescents with renal transplants. Pediatr Res 64(2):218–222. https://doi.org/10.1203/PDR.0b013e318176180e

    Article  CAS  PubMed  Google Scholar 

  • Andrade F, Rodriguez-Soriano J, Prieto JA, Aguirre M, Ariceta G, Lage S, Azcona I, Prado C, Sanjurjo P, Aldamiz-Echevarria L (2011) Methylation cycle, arginine-creatine pathway and asymmetric dimethylarginine in paediatric renal transplant. Nephrol Dial Transpl 26(1):328–336. https://doi.org/10.1093/ndt/gfq404

    Article  CAS  Google Scholar 

  • Atzler D, Schonhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC, Gerloff C, Jaehde U, Jagodzinski A, Boger RH, Choe CU, Schwedhelm E (2016) Oral supplementation with L-homoarginine in young volunteers. Br J Clin Pharmacol 82(6):1477–1485. https://doi.org/10.1111/bcp.13068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atzler D, McAndrew DJ, Cordts K, Schneider JE, Zervou S, Schwedhelm E, Neubauer S, Lygate CA (2017) Dietary supplementation with homoarginine preserves cardiac function in a murine model of post-myocardial infarction heart failure. Circulation 135(4):400–402. https://doi.org/10.1161/CIRCULATIONAHA.116.025673

    Article  CAS  PubMed  Google Scholar 

  • Battini R, Leuzzi V, Carducci C, Tosetti M, Bianchi MC, Item CB, Stockler-Ipsiroglu S, Cioni G (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77(4):326–331

    Article  CAS  PubMed  Google Scholar 

  • Böger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98(18):1842–1847

    Article  PubMed  Google Scholar 

  • Bollenbach A, Cordts K, Hanff E, Atzler D, Choe CU, Schwedhelm E, Tsikas D (2019) Evidence by GC-MS that lysine is an arginase-catalyzed metabolite of homoarginine in vitro and in vivo in humans. Anal Biochem 577:59–66

    Article  CAS  PubMed  Google Scholar 

  • Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, Simova O, Stockebrand M, Lackner K, Nabuurs C, Marescau B, Streichert T, Müller C, Lüneburg N, De Deyn PP, Benndorf RA, Baldus S, Gerloff C, Blankenberg S, Heerschap A, Grant PJ, Magnus T, Zeller T, Isbrandt D, Schwedhelm E (2013) Homoarginine levels are regulated by l-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128(13):1451–1461. https://doi.org/10.1161/CIRCULATIONAHA.112.000580

    Article  CAS  PubMed  Google Scholar 

  • Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJ (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–20. https://doi.org/10.1161/CIRCULATIONAHA.105.000448

    Article  CAS  PubMed  Google Scholar 

  • Das AM, Ullrich K, Isbrandt D (2000) Upregulation of respiratory chain enzymes in guanidinoacetate methyltransferase deficiency. J Inherit Metab Dis 23(4):375–377

    Article  CAS  PubMed  Google Scholar 

  • Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5 (5):303-311; discussion 312-303

  • Dumont J, Zureik M, Cottel D, Montaye M, Ducimetiere P, Amouyel P, Brousseau T (2007) Association of arginase 1 gene polymorphisms with the risk of myocardial infarction and common carotid intima media thickness. J Med Genet 44(8):526–531. https://doi.org/10.1136/jmg.2006.047449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA (2018) Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 114(3):417–430. https://doi.org/10.1093/cvr/cvx242

    Article  CAS  PubMed  Google Scholar 

  • Frenay AR, Kayacelebi AA, Beckmann B, Soedamah-Muhtu SS, de Borst MH, van den Berg E, van Goor H, Bakker SJ, Tsikas D (2015a) High urinary homoarginine excretion is associated with low rates of all-cause mortality and graft failure in renal transplant recipients. Amino Acids 47(9):1827–1836. https://doi.org/10.1007/s00726-015-2038-6

    Article  CAS  PubMed  Google Scholar 

  • Frenay AR, van den Berg E, de Borst MH, Beckmann B, Tsikas D, Feelisch M, Navis G, Bakker SJ, van Goor H (2015b) Plasma ADMA associates with all-cause mortality in renal transplant recipients. Amino Acids 47(9):1941–1949. https://doi.org/10.1007/s00726-015-2023-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanff E, Kayacelebi AA, Herrmann C, Obermann M, Das AM, Tsikas D (2016a) Unaltered l-arginine/NO pathway in a MELAS patient: is mitochondrial NO synthase involved in the MELAS syndrome? Int J Cardiol 223:479–481. https://doi.org/10.1016/j.ijcard.2016.08.211

    Article  PubMed  Google Scholar 

  • Hanff E, Kayacelebi AA, Yanchev GR, Maassen N, Haghikia A, Tsikas D (2016b) Simultaneous stable-isotope dilution GC-MS measurement of homoarginine, guanidinoacetate and their common precursor arginine in plasma and their interrelationships in healthy and diseased humans. Amino Acids 48(3):721–732. https://doi.org/10.1007/s00726-015-2120-0

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Hafner P, Bollenbach A, Bonati U, Kayacelebi AA, Fischer D, Tsikas D (2018) Effects of single and combined metformin and L-citrulline supplementation on l-arginine-related pathways in Becker muscular dystrophy patients: possible biochemical and clinical implications. Amino Acids 50(10):1391–1406. https://doi.org/10.1007/s00726-018-2614-7

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Hoynck F, von Kaisenberg C, Haffner D, Uckert S, Tsikas D (2019) Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: evidence of altered methylation, transamidination, and arginase activity. Amino Acids. https://doi.org/10.1007/s00726-018-02688-w

    Article  PubMed  Google Scholar 

  • Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15(4):361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3c361:AID-SIM168%3e3.0.CO;2-4

    Article  PubMed  Google Scholar 

  • Hecker M, Walsh DT, Vane JR (1991) On the substrate specificity of nitric oxide synthase. FEBS Lett 294(3):221–224

    Article  CAS  PubMed  Google Scholar 

  • Issa N, Vaughan LE, Denic A, Kremers WK, Chakkera HA, Park WD, Matas AJ, Taler SJ, Stegall MD, Augustine JJ, Rule AD (2019) Larger nephron size, low nephron number, and nephrosclerosis on biopsy as predictors of kidney function after donating a kidney. Am J Transpl. https://doi.org/10.1111/ajt.15259

    Article  Google Scholar 

  • Item CB, Stockler-Ipsiroglu S, Stromberger C, Muhl A, Alessandri MG, Bianchi MC, Tosetti M, Fornai F, Cioni G (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133. https://doi.org/10.1086/323765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014) GC-MS and GC-MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46(9):2205–2217. https://doi.org/10.1007/s00726-014-1774-3

    Article  CAS  PubMed  Google Scholar 

  • Kayacelebi AA, Minović I, Hanff E, Frenay AS, de Borst MH, Feelisch M, van Goor H, Bakker SJL, Tsikas D (2017) Low plasma homoarginine concentration is associated with high rates of all-cause mortality in renal transplant recipients. Amino Acids 49(7):1193–1202. https://doi.org/10.1007/s00726-017-2420-7

    Article  CAS  PubMed  Google Scholar 

  • Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas R, Mieth M, Titze SI, Hübner S, Fromm MF, Kielstein JT, Schmid M, Köttgen A, Kronenberg F, Krane V, Hausknecht B, Eckardt KU, Schneider MP, investigators Gs (2018) Drugs linked to plasma homoarginine in chronic kidney disease patients-a cross-sectional analysis of the German Chronic Kidney Disease cohort. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy342

    Article  Google Scholar 

  • Martens-Lobenhoffer J, Emrich IE, Zawada AM, Fliser D, Wagenpfeil S, Heine GH, Bode-Böger SM (2018) L-Homoarginine and its AGXT2-metabolite GOCA in chronic kidney disease as markers for clinical status and prognosis. Amino Acids 50(10):1347–1356. https://doi.org/10.1007/s00726-018-2610-y

    Article  CAS  PubMed  Google Scholar 

  • Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine. Biochemistry 37(29):10453–10460. https://doi.org/10.1021/bi980742t

    Article  CAS  PubMed  Google Scholar 

  • Morales JM, Dominguez-Gil B (2006) Impact of tacrolimus and mycophenolate mofetil combination on cardiovascular risk profile after kidney transplantation. J Am Soc Nephrol 17(12 Suppl 3):S296–303. https://doi.org/10.1681/ASN.2006080930

    Article  CAS  PubMed  Google Scholar 

  • Oterdoom LH, de Vries AP, van Ree RM, Gansevoort RT, van Son WJ, van der Heide JJ, Navis G, de Jong PE, Gans RO, Bakker SJ (2009) N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 87(10):1562–1570. https://doi.org/10.1097/TP.0b013e3181a4bb80

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, Wanner C, Boehm BO, März W (2011a) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97(15):1222–1227. https://doi.org/10.1136/hrt.2010.220731

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, Wanner C, Böhm BO, März W (2011b) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42(4):1132–1134. https://doi.org/10.1161/STROKEAHA.110.603035

    Article  CAS  PubMed  Google Scholar 

  • Post A, Tsikas D, Bakker SJL (2019) Creatine is a conditionally essential nutrient in chronic kidney disease: a hypothesis and narrative literature review. Nutrients. https://doi.org/10.3390/nu11051044

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodionov RN, Oppici E, Martens-Lobenhoffer J, Jarzebska N, Brilloff S, Burdin D, Demyanov A, Kolouschek A, Leiper J, Maas R, Cellini B, Weiss N, Bode-Böger SM (2016) A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci Rep 6:35277. https://doi.org/10.1038/srep35277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123(2):294–297

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Takahara K, Natelson S (1973) Urinary guanidinoacetate-guanidinosuccinate ratio: an indicator of kidney dysfunction. Clin Chem 19(3):315–321

    CAS  PubMed  Google Scholar 

  • Schelling JR (2016) Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31(5):693–706. https://doi.org/10.1007/s00467-015-3169-4

    Article  PubMed  Google Scholar 

  • Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58(5):914–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsikas D, Bollenbach A, Hanff E, Kayacelebi AA (2018) Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): the ADMA, SDMA and hArg paradoxes. Cardiovasc Diabetol 17(1):1. https://doi.org/10.1186/s12933-017-0656-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda S, Yamagishi S, Kaida Y, Okuda S (2007) Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology (Carlton) 12(6):582–590. https://doi.org/10.1111/j.1440-1797.2007.00840.x

    Article  CAS  Google Scholar 

  • Valtonen P, Laitinen T, Lyyra-Laitinen T, Raitakari OT, Juonala M, Viikari JS, Heiskanen N, Vanninen E, Punnonen K, Heinonen S (2008) Serum L-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72(11):1879–1884

    Article  CAS  PubMed  Google Scholar 

  • van den Berg E, Engberink MF, Brink EJ, van Baak MA, Joosten MM, Gans RO, Navis G, Bakker SJ (2012a) Dietary acid load and metabolic acidosis in renal transplant recipients. Clin J Am Soc Nephrol 7(11):1811–1818. https://doi.org/10.2215/CJN.04590512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg E, Geleijnse JM, Brink EJ, van Baak MA, Homan van der Heide JJ, Gans RO, Navis G, Bakker SJ (2012b) Sodium intake and blood pressure in renal transplant recipients. Nephrol Dial Transpl 27(8):3352–3359. https://doi.org/10.1093/ndt/gfs069

    Article  CAS  Google Scholar 

  • van den Berg E, Engberink MF, Brink EJ, van Baak MA, Gans RO, Navis G, Bakker SJ (2013) Dietary protein, blood pressure and renal function in renal transplant recipients. Br J Nutr 109(8):1463–1470. https://doi.org/10.1017/S0007114512003455

    Article  CAS  PubMed  Google Scholar 

  • van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES (2006) Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res 69(2):341–347. https://doi.org/10.1016/j.cardiores.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Wallimann T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133:51–66. https://doi.org/10.1007/Bf01267947

    Article  PubMed  Google Scholar 

  • Yokoi I, Kabuto H, Habu H, Mori A (1994) Alpha-Guanidinoglutaric acid, an endogenous convulsant, as a novel nitric oxide synthase inhibitor. J Neurochem 63(4):1565–1567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Dutch Kidney Foundation (NSN C08-2254, P13-114), by COST Action BM1005: ENOG: European Network on Gasotransmitters (www.gasotransmitters.eu) and by the Top Institute Food and Nutrition (A-1003). This study was based on the TransplantLines Food and Nutrition Biobank and Cohort Study (TxL-FN), which was funded by the Top Institute Food and Nutrition of the Netherlands (Grant A-1003). The study is registered at clinicaltrials.gov under number NCT02811835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Hanff.

Ethics declarations

Conflict of interest

All authors report no conflict of interest.

Ethical approval

The Institutional Review Board approved the study protocol (METc 2008/186) which was in adherence to the Declaration of Helsinki.

Additional information

Handling Editor: E. Closs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanff, E., Said, M.Y., Kayacelebi, A.A. et al. High plasma guanidinoacetate-to-homoarginine ratio is associated with high all-cause and cardiovascular mortality rate in adult renal transplant recipients. Amino Acids 51, 1485–1499 (2019). https://doi.org/10.1007/s00726-019-02783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02783-6

Keywords

Navigation